當前位置: 首頁>>代碼示例>>Python>>正文


Python DataFrame.from_dict方法代碼示例

本文整理匯總了Python中pandas.DataFrame.from_dict方法的典型用法代碼示例。如果您正苦於以下問題:Python DataFrame.from_dict方法的具體用法?Python DataFrame.from_dict怎麽用?Python DataFrame.from_dict使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pandas.DataFrame的用法示例。


在下文中一共展示了DataFrame.from_dict方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_reader_seconds

# 需要導入模塊: from pandas import DataFrame [as 別名]
# 或者: from pandas.DataFrame import from_dict [as 別名]
def test_reader_seconds(self, ext):

        # Test reading times with and without milliseconds. GH5945.
        expected = DataFrame.from_dict({"Time": [time(1, 2, 3),
                                                 time(2, 45, 56, 100000),
                                                 time(4, 29, 49, 200000),
                                                 time(6, 13, 42, 300000),
                                                 time(7, 57, 35, 400000),
                                                 time(9, 41, 28, 500000),
                                                 time(11, 25, 21, 600000),
                                                 time(13, 9, 14, 700000),
                                                 time(14, 53, 7, 800000),
                                                 time(16, 37, 0, 900000),
                                                 time(18, 20, 54)]})

        actual = self.get_exceldf('times_1900', ext, 'Sheet1')
        tm.assert_frame_equal(actual, expected)

        actual = self.get_exceldf('times_1904', ext, 'Sheet1')
        tm.assert_frame_equal(actual, expected) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:22,代碼來源:test_excel.py

示例2: test_reader_converters

# 需要導入模塊: from pandas import DataFrame [as 別名]
# 或者: from pandas.DataFrame import from_dict [as 別名]
def test_reader_converters(self, ext):

        basename = 'test_converters'

        expected = DataFrame.from_dict(OrderedDict([
            ("IntCol", [1, 2, -3, -1000, 0]),
            ("FloatCol", [12.5, np.nan, 18.3, 19.2, 0.000000005]),
            ("BoolCol", ['Found', 'Found', 'Found', 'Not found', 'Found']),
            ("StrCol", ['1', np.nan, '3', '4', '5']),
        ]))

        converters = {'IntCol': lambda x: int(x) if x != '' else -1000,
                      'FloatCol': lambda x: 10 * x if x else np.nan,
                      2: lambda x: 'Found' if x != '' else 'Not found',
                      3: lambda x: str(x) if x else '',
                      }

        # should read in correctly and set types of single cells (not array
        # dtypes)
        actual = self.get_exceldf(basename, ext, 'Sheet1',
                                  converters=converters)
        tm.assert_frame_equal(actual, expected) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:24,代碼來源:test_excel.py

示例3: result

# 需要導入模塊: from pandas import DataFrame [as 別名]
# 或者: from pandas.DataFrame import from_dict [as 別名]
def result(self):
        # 根據daily_life裏麵的數據 獲取最後的結果
        result = defaultdict(list)
        for daily in self.daily_life.values():
            for key, value in daily.items():
                result[key].append(value)

        df = DataFrame.from_dict(result).set_index("date")
        try:
            import matplotlib.pyplot as plt
            df['balance'].plot()
            plt.show()

        except ImportError as e:
            pass
        finally:
            return self._cal_result(df) 
開發者ID:ctpbee,項目名稱:ctpbee,代碼行數:19,代碼來源:account.py

示例4: test_frame_dict_constructor_empty_series

# 需要導入模塊: from pandas import DataFrame [as 別名]
# 或者: from pandas.DataFrame import from_dict [as 別名]
def test_frame_dict_constructor_empty_series(self):
        s1 = Series([
            1, 2, 3, 4
        ], index=MultiIndex.from_tuples([(1, 2), (1, 3), (2, 2), (2, 4)]))
        s2 = Series([
            1, 2, 3, 4
        ], index=MultiIndex.from_tuples([(1, 2), (1, 3), (3, 2), (3, 4)]))
        s3 = Series()

        # it works!
        DataFrame({'foo': s1, 'bar': s2, 'baz': s3})
        DataFrame.from_dict({'foo': s1, 'baz': s3, 'bar': s2}) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:14,代碼來源:test_multilevel.py

示例5: test_get_dummies_dont_sparsify_all_columns

# 需要導入模塊: from pandas import DataFrame [as 別名]
# 或者: from pandas.DataFrame import from_dict [as 別名]
def test_get_dummies_dont_sparsify_all_columns(self, sparse):
        # GH18914
        df = DataFrame.from_dict(OrderedDict([('GDP', [1, 2]),
                                              ('Nation', ['AB', 'CD'])]))
        df = get_dummies(df, columns=['Nation'], sparse=sparse)
        df2 = df.reindex(columns=['GDP'])

        tm.assert_frame_equal(df[['GDP']], df2) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:10,代碼來源:test_reshape.py

示例6: test_to_dict_index_dtypes

# 需要導入模塊: from pandas import DataFrame [as 別名]
# 或者: from pandas.DataFrame import from_dict [as 別名]
def test_to_dict_index_dtypes(self, into, expected):
        # GH 18580
        # When using to_dict(orient='index') on a dataframe with int
        # and float columns only the int columns were cast to float

        df = DataFrame({'int_col': [1, 2, 3],
                        'float_col': [1.0, 2.0, 3.0]})

        result = df.to_dict(orient='index', into=into)
        cols = ['int_col', 'float_col']
        result = DataFrame.from_dict(result, orient='index')[cols]
        expected = DataFrame.from_dict(expected, orient='index')[cols]
        tm.assert_frame_equal(result, expected) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:15,代碼來源:test_convert_to.py

示例7: test_scientific_no_exponent

# 需要導入模塊: from pandas import DataFrame [as 別名]
# 或者: from pandas.DataFrame import from_dict [as 別名]
def test_scientific_no_exponent(all_parsers):
    # see gh-12215
    df = DataFrame.from_dict(OrderedDict([("w", ["2e"]), ("x", ["3E"]),
                                          ("y", ["42e"]),
                                          ("z", ["632E"])]))
    data = df.to_csv(index=False)
    parser = all_parsers

    for precision in parser.float_precision_choices:
        df_roundtrip = parser.read_csv(StringIO(data),
                                       float_precision=precision)
        tm.assert_frame_equal(df_roundtrip, df) 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:14,代碼來源:test_common.py

示例8: test_scientific_no_exponent

# 需要導入模塊: from pandas import DataFrame [as 別名]
# 或者: from pandas.DataFrame import from_dict [as 別名]
def test_scientific_no_exponent(self):
        # see gh-12215
        df = DataFrame.from_dict(OrderedDict([('w', ['2e']), ('x', ['3E']),
                                              ('y', ['42e']),
                                              ('z', ['632E'])]))
        data = df.to_csv(index=False)
        for prec in self.float_precision_choices:
            df_roundtrip = self.read_csv(
                StringIO(data), float_precision=prec)
            tm.assert_frame_equal(df_roundtrip, df) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:12,代碼來源:common.py

示例9: test_merge_nosort

# 需要導入模塊: from pandas import DataFrame [as 別名]
# 或者: from pandas.DataFrame import from_dict [as 別名]
def test_merge_nosort(self):
        # #2098, anything to do?

        from datetime import datetime

        d = {"var1": np.random.randint(0, 10, size=10),
             "var2": np.random.randint(0, 10, size=10),
             "var3": [datetime(2012, 1, 12), datetime(2011, 2, 4),
                      datetime(
                      2010, 2, 3), datetime(2012, 1, 12),
                      datetime(
                      2011, 2, 4), datetime(2012, 4, 3),
                      datetime(
                      2012, 3, 4), datetime(2008, 5, 1),
                      datetime(2010, 2, 3), datetime(2012, 2, 3)]}
        df = DataFrame.from_dict(d)
        var3 = df.var3.unique()
        var3.sort()
        new = DataFrame.from_dict({"var3": var3,
                                   "var8": np.random.random(7)})

        result = df.merge(new, on="var3", sort=False)
        exp = merge(df, new, on='var3', sort=False)
        assert_frame_equal(result, exp)

        self.assert_((df.var3.unique() == result.var3.unique()).all()) 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:28,代碼來源:test_merge.py

示例10: test_panel_join_many

# 需要導入模塊: from pandas import DataFrame [as 別名]
# 或者: from pandas.DataFrame import from_dict [as 別名]
def test_panel_join_many(self):
        tm.K = 10
        panel = tm.makePanel()
        tm.K = 4

        panels = [panel.ix[:2], panel.ix[2:6], panel.ix[6:]]

        joined = panels[0].join(panels[1:])
        tm.assert_panel_equal(joined, panel)

        panels = [panel.ix[:2, :-5], panel.ix[2:6, 2:], panel.ix[6:, 5:-7]]

        data_dict = {}
        for p in panels:
            data_dict.update(compat.iteritems(p))

        joined = panels[0].join(panels[1:], how='inner')
        expected = Panel.from_dict(data_dict, intersect=True)
        tm.assert_panel_equal(joined, expected)

        joined = panels[0].join(panels[1:], how='outer')
        expected = Panel.from_dict(data_dict, intersect=False)
        tm.assert_panel_equal(joined, expected)

        # edge cases
        self.assertRaises(ValueError, panels[0].join, panels[1:],
                          how='outer', lsuffix='foo', rsuffix='bar')
        self.assertRaises(ValueError, panels[0].join, panels[1:],
                          how='right') 
開發者ID:ktraunmueller,項目名稱:Computable,代碼行數:31,代碼來源:test_merge.py

示例11: load_log

# 需要導入模塊: from pandas import DataFrame [as 別名]
# 或者: from pandas.DataFrame import from_dict [as 別名]
def load_log(name):
    log = cPickle.load(open(name + "_log.zip"))
    models["log_" + name] = log
    df = DataFrame.from_dict(log, orient='index')
    models["df_" + name] = df
    print "Iterations done for {}: {}".format(name, log.status['iterations_done'])
    print "Average batch time for {} was {}".format(
        name, df.time_train_this_batch.mean())
    print "Best PER: {}".format(log.status.get('best_valid_per', '?')) 
開發者ID:rizar,項目名稱:attention-lvcsr,代碼行數:11,代碼來源:notebook.py

示例12: do

# 需要導入模塊: from pandas import DataFrame [as 別名]
# 或者: from pandas.DataFrame import from_dict [as 別名]
def do(self, which_callback, *args):
        df = DataFrame.from_dict(self.experiment_params, orient='index')
        df.to_hdf(os.path.join(self.dir, 'params'), 'params', mode='w',
                  complevel=5, complib='blosc') 
開發者ID:CuriousAI,項目名稱:ladder,代碼行數:6,代碼來源:utils.py

示例13: get_realizations

# 需要導入模塊: from pandas import DataFrame [as 別名]
# 或者: from pandas.DataFrame import from_dict [as 別名]
def get_realizations(self, func, n=None, name=None, **kwargs):
        """Internal method to obtain  n number of realizations."""
        if name:
            kwargs["name"] = name

        params = self.get_parameter_sample(n=n, name=name)
        data = {}

        for i, param in enumerate(params):
            data[i] = func(parameters=param, **kwargs)

        return DataFrame.from_dict(data, orient="columns") 
開發者ID:pastas,項目名稱:pastas,代碼行數:14,代碼來源:solver.py

示例14: read_umi_tools

# 需要導入模塊: from pandas import DataFrame [as 別名]
# 或者: from pandas.DataFrame import from_dict [as 別名]
def read_umi_tools(filename: PathLike, dtype: str = "float32") -> AnnData:
    """\
    Read a gzipped condensed count matrix from umi_tools.

    Parameters
    ----------
    filename
        File name to read from.
    """
    # import pandas for conversion of a dict of dicts into a matrix
    # import gzip to read a gzipped file :-)
    import gzip
    from pandas import DataFrame

    dod = {}  # this will contain basically everything
    fh = gzip.open(fspath(filename))
    header = fh.readline()  # read the first line

    for line in fh:
        # gzip read bytes, hence the decoding
        t = line.decode("ascii").split("\t")
        try:
            dod[t[1]].update({t[0]: int(t[2])})
        except KeyError:
            dod[t[1]] = {t[0]: int(t[2])}

    df = DataFrame.from_dict(dod, orient="index")  # build the matrix
    df.fillna(value=0.0, inplace=True)  # many NaN, replace with zeros
    return AnnData(
        np.array(df), dict(obs_names=df.index), dict(var_names=df.columns), dtype=dtype,
    ) 
開發者ID:theislab,項目名稱:anndata,代碼行數:33,代碼來源:read.py

示例15: _add_item_to_sqlite

# 需要導入模塊: from pandas import DataFrame [as 別名]
# 或者: from pandas.DataFrame import from_dict [as 別名]
def _add_item_to_sqlite(dbcon, item):
    # modify item info to prep for appending to sqlite table
    item_info = copy.deepcopy(item)
    item_info['largeImage'] = str(item_info['largeImage'])

    item_info_dtypes = {
        '_id': String(),
        '_modelType': String(),
        'baseParentId': String(),
        'baseParentType': String(),
        'copyOfItem': String(),
        'created': String(),
        'creatorId': String(),
        'description': String(),
        'folderId': String(),
        'largeImage': String(),
        'name': String(),
        'size': Integer(),
        'updated': String(),
    }

    # in case anything is not in the schema, drop it
    item_info = {
        k: v for k, v in item_info.items()
        if k in item_info_dtypes.keys()}

    # convert to df and add to items table
    item_info_df = DataFrame.from_dict(item_info, orient='index').T
    item_info_df.to_sql(
        name='items', con=dbcon, if_exists='append',
        dtype=item_info_dtypes, index=False) 
開發者ID:DigitalSlideArchive,項目名稱:HistomicsTK,代碼行數:33,代碼來源:annotation_database_parser.py


注:本文中的pandas.DataFrame.from_dict方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。