當前位置: 首頁>>代碼示例>>Python>>正文


Python pandas.CategoricalDtype方法代碼示例

本文整理匯總了Python中pandas.CategoricalDtype方法的典型用法代碼示例。如果您正苦於以下問題:Python pandas.CategoricalDtype方法的具體用法?Python pandas.CategoricalDtype怎麽用?Python pandas.CategoricalDtype使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在pandas的用法示例。


在下文中一共展示了pandas.CategoricalDtype方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: build_series

# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import CategoricalDtype [as 別名]
def build_series(series_obj, fill_value=1, size=1):
    empty_series = build_empty_series(series_obj.dtype, index=series_obj.index_value.to_pandas()[:0])
    record = _generate_value(series_obj.dtype, fill_value)
    if isinstance(empty_series.index, pd.MultiIndex):
        index = tuple(_generate_value(level.dtype, fill_value) for level in empty_series.index.levels)
        empty_series.loc[index, ] = record
    else:
        if isinstance(empty_series.index.dtype, pd.CategoricalDtype):
            index = None
        else:
            index = _generate_value(empty_series.index.dtype, fill_value)
        empty_series.loc[index] = record

    empty_series = pd.concat([empty_series] * size)
    # make sure dtype correct for MultiIndex
    empty_series = empty_series.astype(series_obj.dtype, copy=False)
    return empty_series 
開發者ID:mars-project,項目名稱:mars,代碼行數:19,代碼來源:utils.py

示例2: mars_serialize_context

# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import CategoricalDtype [as 別名]
def mars_serialize_context():
    global _serialize_context
    if _serialize_context is None:
        ctx = pyarrow.default_serialization_context()
        ctx.register_type(SparseNDArray, 'mars.SparseNDArray',
                          custom_serializer=_serialize_sparse_nd_array,
                          custom_deserializer=_deserialize_sparse_nd_array)
        ctx.register_type(GroupByWrapper, 'pandas.GroupByWrapper',
                          custom_serializer=_serialize_groupby_wrapper,
                          custom_deserializer=_deserialize_groupby_wrapper)
        ctx.register_type(pd.Interval, 'pandas.Interval',
                          custom_serializer=_serialize_pandas_interval,
                          custom_deserializer=_deserialize_pandas_interval)
        ctx.register_type(pd.Categorical, 'pandas.Categorical',
                          custom_serializer=_serialze_pandas_categorical,
                          custom_deserializer=_deserialize_pandas_categorical)
        ctx.register_type(pd.CategoricalDtype, 'pandas.CategoricalDtype',
                          custom_serializer=_serialize_pandas_categorical_dtype,
                          custom_deserializer=_deserialize_pandas_categorical_dtype)
        _apply_pyarrow_serialization_patch(ctx)
        if vineyard is not None:  # pragma: no cover
            vineyard.register_vineyard_serialize_context(ctx)
        _serialize_context = ctx
    return _serialize_context 
開發者ID:mars-project,項目名稱:mars,代碼行數:26,代碼來源:dataserializer.py

示例3: get_mapd_type_from_known

# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import CategoricalDtype [as 別名]
def get_mapd_type_from_known(dtype):
    """For cases where pandas type system matches"""
    if is_bool_dtype(dtype):
        return 'BOOL'
    elif is_integer_dtype(dtype):
        if dtype.itemsize <= 1:
            return 'TINYINT'
        elif dtype.itemsize == 2:
            return 'SMALLINT'
        elif dtype.itemsize == 4:
            return 'INT'
        else:
            return 'BIGINT'
    elif is_float_dtype(dtype):
        if dtype.itemsize <= 4:
            return 'FLOAT'
        else:
            return 'DOUBLE'
    elif is_datetime64_any_dtype(dtype):
        return 'TIMESTAMP'
    elif isinstance(dtype, pd.CategoricalDtype):
        return 'STR'
    else:
        raise TypeError("Unhandled type {}".format(dtype)) 
開發者ID:omnisci,項目名稱:pymapd,代碼行數:26,代碼來源:_pandas_loaders.py

示例4: table_type

# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import CategoricalDtype [as 別名]
def table_type(df_column):
    # Note - this only works with Pandas >= 1.0.0

    if sys.version_info < (3, 0):  # Pandas 1.0.0 does not support Python 2
        return 'any'

    if isinstance(df_column.dtype, pd.DatetimeTZDtype):
        return 'datetime',
    elif (isinstance(df_column.dtype, pd.StringDtype) or
            isinstance(df_column.dtype, pd.BooleanDtype) or
            isinstance(df_column.dtype, pd.CategoricalDtype) or
            isinstance(df_column.dtype, pd.PeriodDtype)):
        return 'text'
    elif (isinstance(df_column.dtype, pd.SparseDtype) or
            isinstance(df_column.dtype, pd.IntervalDtype) or
            isinstance(df_column.dtype, pd.Int8Dtype) or
            isinstance(df_column.dtype, pd.Int16Dtype) or
            isinstance(df_column.dtype, pd.Int32Dtype) or
            isinstance(df_column.dtype, pd.Int64Dtype)):
        return 'numeric'
    else:
        return 'any' 
開發者ID:plotly,項目名稱:dash-docs,代碼行數:24,代碼來源:filtering_fe_autotype.py

示例5: check_dtype_is_categorical

# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import CategoricalDtype [as 別名]
def check_dtype_is_categorical(self, expr, func_ir, block, typemap, calltypes):
    dtype_var = None
    for name, var in expr.kws:
        if name == 'dtype':
            dtype_var = var
    if not dtype_var:
        return False

    dtype_var_def = guard(get_definition, func_ir, dtype_var)
    is_alias = isinstance(dtype_var_def, ir.Const) and dtype_var_def.value == 'category'
    is_categoricaldtype = (hasattr(dtype_var_def, 'func') and
                           func_ir.infer_constant(dtype_var_def.func) == pd.CategoricalDtype)
    if not (is_alias or is_categoricaldtype):
        return False

    return True 
開發者ID:IntelPython,項目名稱:sdc,代碼行數:18,代碼來源:rewrites.py

示例6: from_dtype

# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import CategoricalDtype [as 別名]
def from_dtype(pdtype):
    """
    Return a Numba Type instance corresponding to the given Pandas *dtype*.
    NotImplementedError is raised if unsupported Pandas dtypes.
    """
    # TODO: use issubclass
    if isinstance(pdtype, pd.CategoricalDtype):
        if pdtype.categories is None:
            categories = None
        else:
            categories = list(pdtype.categories)
        return CategoricalDtypeType(categories=categories,
                                    ordered=pdtype.ordered)

    raise NotImplementedError("%r cannot be represented as a Numba type"
                              % (pdtype,)) 
開發者ID:IntelPython,項目名稱:sdc,代碼行數:18,代碼來源:pandas_support.py

示例7: _get_dtype_str

# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import CategoricalDtype [as 別名]
def _get_dtype_str(t):
    dtype = t.dtype

    if isinstance(t, Categorical):
        # return categorical representation
        # for some reason pandas and pyarrow read_csv() return CategoricalDtype with
        # ordered=False in case when dtype is with ordered=None
        return str(t).replace('ordered=None', 'ordered=False')

    if dtype == types.NPDatetime('ns'):
        dtype = 'NPDatetime("ns")'
    if t == string_array_type:
        # HACK: add string_array_type to numba.types
        # FIXME: fix after Numba #3372 is resolved
        types.string_array_type = string_array_type
        return 'string_array_type'
    return '{}[::1]'.format(dtype) 
開發者ID:IntelPython,項目名稱:sdc,代碼行數:19,代碼來源:csv_ext.py

示例8: read

# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import CategoricalDtype [as 別名]
def read(cls, *args, **kwargs):
        query_compiler = cls._read(*args, **kwargs)
        # TODO (devin-petersohn): Make this section more general for non-pandas kernel
        # implementations.
        if partition_format.get().lower() != "pandas":
            raise NotImplementedError("FIXME")
        import pandas

        if hasattr(query_compiler, "dtypes") and any(
            isinstance(t, pandas.CategoricalDtype) for t in query_compiler.dtypes
        ):
            dtypes = query_compiler.dtypes
            return query_compiler.astype(
                {
                    t: dtypes[t]
                    for t in dtypes.index
                    if isinstance(dtypes[t], pandas.CategoricalDtype)
                }
            )
        return query_compiler 
開發者ID:modin-project,項目名稱:modin,代碼行數:22,代碼來源:file_reader.py

示例9: ravel

# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import CategoricalDtype [as 別名]
def ravel(self, order="C"):
        """
        Returns the flattened containing data as ndarray.

        Parameters
        ----------
        order : {'C', 'F', 'A', 'K'}, optional

        Returns
        ----------
        numpy.ndarray or ndarray-like
            Flattened data of the Series.

        """
        data = self._query_compiler.to_numpy().flatten(order=order)
        if isinstance(self.dtype, pandas.CategoricalDtype):
            data = pandas.Categorical(data, dtype=self.dtype)

        return data 
開發者ID:modin-project,項目名稱:modin,代碼行數:21,代碼來源:series.py

示例10: _serialize_pandas_categorical_dtype

# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import CategoricalDtype [as 別名]
def _serialize_pandas_categorical_dtype(obj: pd.CategoricalDtype):
    return [obj.categories, obj.ordered] 
開發者ID:mars-project,項目名稱:mars,代碼行數:4,代碼來源:dataserializer.py

示例11: _deserialize_pandas_categorical_dtype

# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import CategoricalDtype [as 別名]
def _deserialize_pandas_categorical_dtype(data):
    return pd.CategoricalDtype(data[0], data[1]) 
開發者ID:mars-project,項目名稱:mars,代碼行數:4,代碼來源:dataserializer.py

示例12: as_dtype

# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import CategoricalDtype [as 別名]
def as_dtype(nbtype):
    """
    Return a Pandas *dtype* instance corresponding to the given Numba type.
    NotImplementedError is raised if no correspondence is known.
    """
    nbtype = types.unliteral(nbtype)
    if isinstance(nbtype, CategoricalDtypeType):
        return pd.CategoricalDtype(categories=nbtype.categories,
                                   ordered=nbtype.ordered)

    raise NotImplementedError("%r cannot be represented as a Pandas dtype"
                              % (nbtype,)) 
開發者ID:IntelPython,項目名稱:sdc,代碼行數:14,代碼來源:pandas_support.py

示例13: _CategoricalDtype

# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import CategoricalDtype [as 別名]
def _CategoricalDtype(categories=None, ordered=None):
    """
    Implementation of constructor for pandas CategoricalDtype.
    """
    if isinstance(ordered, types.Literal):
        ordered_const = ordered.literal_value
    else:
        ordered_const = ordered

    def impl(categories=None, ordered=None):
        return _CategoricalDtype_intrinsic(categories, ordered_const)
    return impl 
開發者ID:IntelPython,項目名稱:sdc,代碼行數:14,代碼來源:pdimpl.py

示例14: _CategoricalDtype_intrinsic

# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import CategoricalDtype [as 別名]
def _CategoricalDtype_intrinsic(typingctx, categories, ordered):
    """
    Creates CategoricalDtype object.

    Assertions:
        categories - Tuple of literal values or None
        ordered - literal Bool
    """
    if isinstance(categories, types.NoneType):
        categories_list = None
    if isinstance(categories, types.Tuple):
        categories_list = [c.literal_value for c in categories]

    if isinstance(ordered, types.NoneType):
        ordered_value = None
    if isinstance(ordered, types.Literal):
        ordered_value = ordered.literal_value

    return_type = CategoricalDtypeType(categories_list, ordered_value)
    sig = return_type(categories, ordered)

    def codegen(context, builder, signature, args):
        # All CategoricalDtype objects are dummy values in LLVM.
        # They only exist in the type level.
        return context.get_dummy_value()

    return sig, codegen


# TODO: move to tools 
開發者ID:IntelPython,項目名稱:sdc,代碼行數:32,代碼來源:pdimpl.py

示例15: pd_csv_cat1

# 需要導入模塊: import pandas [as 別名]
# 或者: from pandas import CategoricalDtype [as 別名]
def pd_csv_cat1(self, use_pyarrow=False):
        read_csv = self._read_csv(use_pyarrow)

        def test_impl():
            names = ['C1', 'C2', 'C3']
            ct_dtype = CategoricalDtype(['A', 'B', 'C'])
            dtypes = {'C1': np.int, 'C2': ct_dtype, 'C3': str}
            df = read_csv("csv_data_cat1.csv", names=names, dtype=dtypes)
            return df

        return test_impl 
開發者ID:IntelPython,項目名稱:sdc,代碼行數:13,代碼來源:test_io.py


注:本文中的pandas.CategoricalDtype方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。