本文整理匯總了Python中paddle.fluid.program_guard方法的典型用法代碼示例。如果您正苦於以下問題:Python fluid.program_guard方法的具體用法?Python fluid.program_guard怎麽用?Python fluid.program_guard使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類paddle.fluid
的用法示例。
在下文中一共展示了fluid.program_guard方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: build_program
# 需要導入模塊: from paddle import fluid [as 別名]
# 或者: from paddle.fluid import program_guard [as 別名]
def build_program(main_prog, startup_prog, args, is_train, model, im_shape,
steps_one_epoch):
out = []
with fluid.program_guard(main_prog, startup_prog):
py_reader = model.build_input(im_shape, is_train)
if is_train:
with fluid.unique_name.guard():
loss = model.train_model(py_reader, args.init_channels,
args.auxiliary, args.auxiliary_weight,
args.lrc_loss_lambda)
optimizer = fluid.optimizer.Momentum(
learning_rate=cosine_decay(args.learning_rate, args.epochs,
steps_one_epoch),
regularization=fluid.regularizer.L2Decay(args.weight_decay),
momentum=args.momentum)
optimizer.minimize(loss)
out = [py_reader, loss]
else:
with fluid.unique_name.guard():
prob, acc_1, acc_5 = model.test_model(py_reader,
args.init_channels)
out = [py_reader, prob, acc_1, acc_5]
return out
示例2: infer
# 需要導入模塊: from paddle import fluid [as 別名]
# 或者: from paddle.fluid import program_guard [as 別名]
def infer(self, main_program=None):
if main_program is None:
test_program = fluid.default_main_program().clone(for_test=True)
else:
test_program = main_program.clone(for_test=True)
with fluid.program_guard(test_program):
face_nmsed_out = fluid.layers.detection_output(
self.face_mbox_loc,
self.face_mbox_conf,
self.prior_boxes,
self.box_vars,
nms_threshold=0.3,
nms_top_k=5000,
keep_top_k=750,
score_threshold=0.01)
return test_program, face_nmsed_out
示例3: _build_sync_target_network
# 需要導入模塊: from paddle import fluid [as 別名]
# 或者: from paddle.fluid import program_guard [as 別名]
def _build_sync_target_network():
# 獲取所有的參數
vars = list(fluid.default_main_program().list_vars())
# 把兩個網絡的參數分別過濾出來
policy_vars = list(filter(lambda x: 'GRAD' not in x.name and 'policy' in x.name, vars))
target_vars = list(filter(lambda x: 'GRAD' not in x.name and 'target' in x.name, vars))
policy_vars.sort(key=lambda x: x.name)
target_vars.sort(key=lambda x: x.name)
# 從主程序中克隆一個程序用於更新參數
sync_program = fluid.default_main_program().clone()
with fluid.program_guard(sync_program):
sync_ops = []
for i, var in enumerate(policy_vars):
sync_op = fluid.layers.assign(policy_vars[i], target_vars[i])
sync_ops.append(sync_op)
# 修剪第二個玩了個的參數,完成更新參數
sync_program = sync_program._prune(sync_ops)
return sync_program
# 定義輸入數據
示例4: build_program
# 需要導入模塊: from paddle import fluid [as 別名]
# 或者: from paddle.fluid import program_guard [as 別名]
def build_program(self, main_prog, startup_prog, is_train):
"""
build_program
"""
out = []
with fluid.program_guard(main_prog, startup_prog):
py_reader = self.build_input(self.im_shape, is_train)
if is_train:
with fluid.unique_name.guard():
loss, accuracy = self.fn_model(py_reader)
optimizer = fluid.optimizer.Momentum(
learning_rate=self.lr_strategy(),
momentum=0.9,
use_nesterov=True)
optimizer.minimize(loss)
out = [py_reader, loss, accuracy]
else:
with fluid.unique_name.guard():
loss, accuracy = self.fn_model(py_reader)
out = [py_reader, loss, accuracy]
return out
示例5: init_train_net
# 需要導入模塊: from paddle import fluid [as 別名]
# 或者: from paddle.fluid import program_guard [as 別名]
def init_train_net(self):
"""
訓練網絡初始化,前向+後向
:return:
"""
with fluid.program_guard(self.train_program, self.startup_program):
with fluid.unique_name.guard():
self.data_set_reader.train_reader.create_reader()
fields_dict = self.data_set_reader.train_reader.instance_fields_dict()
self.forward_train_output = self.model_class.forward(fields_dict, phase=InstanceName.TRAINING)
self.optimizer_output_dict = self.model_class.optimizer(self.forward_train_output[InstanceName.LOSS],
self.is_fleet)
if isinstance(self.optimizer_output_dict, dict):
if "use_ernie_opt" in self.optimizer_output_dict:
opt_args = self.optimizer_output_dict["opt_args"]
self.optimizer_output_dict = optimization(train_program=self.train_program,
startup_prog=self.startup_program,
**opt_args)
else:
self.optimizer_output_dict = {}
self.forward_train_output.update(self.optimizer_output_dict)
self.fetch_list_train = list(self.forward_train_output.values())
self.fetch_list_train_key = list(self.forward_train_output.keys())
示例6: init_save_inference_net
# 需要導入模塊: from paddle import fluid [as 別名]
# 或者: from paddle.fluid import program_guard [as 別名]
def init_save_inference_net(self):
"""初始化用來保存inference model的網絡,隻有前向,且是裁切過後的網絡。
:return:
"""
if self.data_set_reader.predict_reader:
with fluid.program_guard(self.save_inference_program, self.startup_program):
with fluid.unique_name.guard():
self.data_set_reader.predict_reader.create_reader()
fields_dict = self.data_set_reader.predict_reader.instance_fields_dict()
forward_output_dict = self.model_class.forward(fields_dict, phase=InstanceName.SAVE_INFERENCE)
target_feed_list = forward_output_dict[InstanceName.TARGET_FEED_NAMES]
self.infer_dict = self.get_infer_data_meta(target_feed_list, fields_dict)
self.feed_target_names = target_feed_list
logging.info('...infer dict...')
logging.info(self.infer_dict)
logging.info('...feed target names...')
logging.info(self.feed_target_names)
self.inference_output = forward_output_dict[InstanceName.TARGET_PREDICTS]
self.save_inference_program = self.save_inference_program.clone(for_test=True)
示例7: extract_weights
# 需要導入模塊: from paddle import fluid [as 別名]
# 或者: from paddle.fluid import program_guard [as 別名]
def extract_weights(args):
# add ERNIR to environment
print('extract weights start'.center(60, '='))
startup_prog = fluid.Program()
test_prog = fluid.Program()
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(startup_prog)
args.max_seq_len = 512
args.use_fp16 = False
args.num_labels = 2
args.loss_scaling = 1.0
ernie_config = ErnieConfig(args.ernie_config_path)
ernie_config.print_config()
with fluid.program_guard(test_prog, startup_prog):
with fluid.unique_name.guard():
create_model(
args,
pyreader_name='train',
ernie_config=ernie_config)
fluid.io.load_vars(exe, args.init_pretraining_params, main_program=test_prog, predicate=if_exist)
state_dict = collections.OrderedDict()
weight_map = build_weight_map()
for ernie_name, pytorch_name in weight_map.items():
fluid_tensor = fluid.global_scope().find_var(ernie_name).get_tensor()
fluid_array = np.array(fluid_tensor, dtype=np.float32)
if 'w_0' in ernie_name:
fluid_array = fluid_array.transpose()
state_dict[pytorch_name] = fluid_array
print(f'{ernie_name} -> {pytorch_name} {fluid_array.shape}')
print('extract weights done!'.center(60, '='))
return state_dict
示例8: test_main
# 需要導入模塊: from paddle import fluid [as 別名]
# 或者: from paddle.fluid import program_guard [as 別名]
def test_main(self):
main_prog = fluid.Program()
startup_prog = fluid.Program()
with fluid.program_guard(main_prog, startup_prog):
pred = fluid.data(name='pred', shape=[None, self.class_num], dtype='float32')
label = fluid.data(name='label', shape=[None, 1], dtype='int64')
acc = Accuracy(topk=self.topk, name=self.name)
state = acc.add_metric_op(pred, label)
exe = fluid.Executor(fluid.CPUPlace())
compiled_main_prog = fluid.CompiledProgram(main_prog)
for i in range(10):
label, pred = self.random_pred_label()
state_ret = exe.run(compiled_main_prog,
feed={'pred': pred, 'label': label},
fetch_list=[s.name for s in to_list(state)],
return_numpy=True)
acc.update(*state_ret)
res_m = acc.accumulate()
res_f = accuracy(pred, label, self.topk)
assert np.all(np.isclose(np.array(res_m), np.array(res_f), rtol=1e-3)), \
"Accuracy precision error: {} != {}".format(res_m, res_f)
acc.reset()
assert np.sum(acc.total) == 0
assert np.sum(acc.count) == 0
示例9: build_program
# 需要導入模塊: from paddle import fluid [as 別名]
# 或者: from paddle.fluid import program_guard [as 別名]
def build_program(self):
"""
build program
"""
self.predict_program = fluid.Program()
self.train_program = fluid.Program()
with fluid.program_guard(self.predict_program):
self.predict_inputs = layers.data(
name='input',
append_batch_size=False,
shape=[self.batch_size, 1],
dtype='int32')
self.predict_tokens, self.predict_adjvec = self.alg.define_predict(
self.predict_inputs)
with fluid.program_guard(self.train_program):
self.train_inputs = layers.data(
name='input',
append_batch_size=False,
shape=[self.batch_size, 1],
dtype='int32')
self.actions_to = layers.data(
name='actions_to',
append_batch_size=False,
shape=[self.batch_size,
self.num_nodes * 2],
dtype='int32')
self.actions_ad = layers.data(
name='actions_ad',
append_batch_size=False,
shape=[self.batch_size,
self.num_nodes * (self.num_nodes - 1)],
dtype='int32')
self.rewards = layers.data(
name='rewards',
append_batch_size=False,
shape=[self.batch_size],
dtype='float32')
self.cost = self.alg.define_learn(
obs=self.train_inputs, reward=self.rewards,
action=[self.actions_to, self.actions_ad])
示例10: init_evaluate_net
# 需要導入模塊: from paddle import fluid [as 別名]
# 或者: from paddle.fluid import program_guard [as 別名]
def init_evaluate_net(self, reader, program):
"""初始化評估過程的網絡,網絡隻有前向
:return:
"""
if reader:
with fluid.program_guard(program, self.startup_program):
with fluid.unique_name.guard():
reader.create_reader()
fields_dict = reader.instance_fields_dict()
self.forward_evaluate_output = self.model_class.forward(fields_dict, phase=InstanceName.EVALUATE)
self.fetch_list_evaluate = list(self.forward_evaluate_output.values())
self.fetch_list_evaluate_key = list(self.forward_evaluate_output.keys())
program = program.clone(for_test=True)
return program
示例11: evaluate
# 需要導入模塊: from paddle import fluid [as 別名]
# 或者: from paddle.fluid import program_guard [as 別名]
def evaluate(logger, args):
"""evaluate a specific model using devset"""
logger.info('Load data_set and vocab...')
with open(os.path.join(args.vocab_dir, 'vocab.data'), 'rb') as fin:
vocab = pickle.load(fin)
logger.info('vocab size is {} and embed dim is {}'.format(vocab.size(
), vocab.embed_dim))
brc_data = BRCDataset(
args.max_p_num, args.max_p_len, args.max_q_len, dev_files=args.devset)
logger.info('Converting text into ids...')
brc_data.convert_to_ids(vocab)
logger.info('Initialize the model...')
# build model
main_program = fluid.Program()
startup_prog = fluid.Program()
with fluid.program_guard(main_program, startup_prog):
with fluid.unique_name.guard():
avg_cost, s_probs, e_probs, match, feed_order = rc_model.rc_model(
args.hidden_size, vocab, args)
# initialize parameters
if not args.use_gpu:
place = fluid.CPUPlace()
dev_count = int(
os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
else:
place = fluid.CUDAPlace(0)
dev_count = fluid.core.get_cuda_device_count()
exe = Executor(place)
if args.load_dir:
logger.info('load from {}'.format(args.load_dir))
fluid.io.load_persistables(
exe, args.load_dir, main_program=main_program)
else:
logger.error('No model file to load ...')
return
inference_program = main_program.clone(for_test=True)
eval_loss, bleu_rouge = validation(
inference_program, avg_cost, s_probs, e_probs, match, feed_order,
place, dev_count, vocab, brc_data, logger, args)
logger.info('Dev eval result: {}'.format(bleu_rouge))
logger.info('Predicted answers are saved to {}'.format(
os.path.join(args.result_dir)))
示例12: predict
# 需要導入模塊: from paddle import fluid [as 別名]
# 或者: from paddle.fluid import program_guard [as 別名]
def predict(logger, args):
"""do inference on the test dataset """
logger.info('Load data_set and vocab...')
with open(os.path.join(args.vocab_dir, 'vocab.data'), 'rb') as fin:
vocab = pickle.load(fin)
logger.info('vocab size is {} and embed dim is {}'.format(vocab.size(
), vocab.embed_dim))
brc_data = BRCDataset(
args.max_p_num, args.max_p_len, args.max_q_len, dev_files=args.testset)
logger.info('Converting text into ids...')
brc_data.convert_to_ids(vocab)
logger.info('Initialize the model...')
# build model
main_program = fluid.Program()
startup_prog = fluid.Program()
with fluid.program_guard(main_program, startup_prog):
with fluid.unique_name.guard():
avg_cost, s_probs, e_probs, match, feed_order = rc_model.rc_model(
args.hidden_size, vocab, args)
# initialize parameters
if not args.use_gpu:
place = fluid.CPUPlace()
dev_count = int(
os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
else:
place = fluid.CUDAPlace(0)
dev_count = fluid.core.get_cuda_device_count()
exe = Executor(place)
if args.load_dir:
logger.info('load from {}'.format(args.load_dir))
fluid.io.load_persistables(
exe, args.load_dir, main_program=main_program)
else:
logger.error('No model file to load ...')
return
inference_program = main_program.clone(for_test=True)
eval_loss, bleu_rouge = validation(
inference_program, avg_cost, s_probs, e_probs, match,
feed_order, place, dev_count, vocab, brc_data, logger, args)