當前位置: 首頁>>代碼示例>>Python>>正文


Python paddle.fluid方法代碼示例

本文整理匯總了Python中paddle.fluid方法的典型用法代碼示例。如果您正苦於以下問題:Python paddle.fluid方法的具體用法?Python paddle.fluid怎麽用?Python paddle.fluid使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在paddle的用法示例。


在下文中一共展示了paddle.fluid方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: conv_bn_layer

# 需要導入模塊: import paddle [as 別名]
# 或者: from paddle import fluid [as 別名]
def conv_bn_layer(input, num_filters, filter_size, stride=1,dilation=1,
                groups=1,act='relu'):
    conv = fluid.layers.conv2d(
        input=input,
        num_filters=num_filters,
        filter_size=filter_size,
        stride=stride,
        padding=dilation*(int((filter_size - 1) / 2)),
        dilation=dilation,
        groups=groups,
        act=act,
        param_attr=fluid.initializer.Xavier(uniform=False),
        bias_attr=False)
    # param_attr=fluid.initializer.Normal(loc=0.0, scale=2.0),
    outconv = fluid.layers.batch_norm(input=conv)
    return outconv 
開發者ID:qixuxiang,項目名稱:Baidu_Lane_Segmentation,代碼行數:18,代碼來源:utils.py

示例2: load

# 需要導入模塊: import paddle [as 別名]
# 或者: from paddle import fluid [as 別名]
def load(self, param_state_pairs, optim_state):
        if self._executor is None:
            executor = fluid.Executor(fluid.CPUPlace())._default_executor
        else:
            executor = self._executor._default_executor

        # restore parameter states
        fluid.core._create_loaded_parameter(
            [param for param, state in param_state_pairs],
            global_scope(), executor)
        for param, state in param_state_pairs:
            self._set_var(param, state)

        # restore optimizer states
        # FIXME what if a different optimizer is used?
        if not self.model._optimizer or not optim_state:
            return
        self._load_optimizer(optim_state, executor) 
開發者ID:PaddlePaddle,項目名稱:hapi,代碼行數:20,代碼來源:model.py

示例3: rnn_net

# 需要導入模塊: import paddle [as 別名]
# 或者: from paddle import fluid [as 別名]
def rnn_net(ipt, input_dim):
    emb = fluid.layers.embedding(input=ipt, size=[input_dim, 128], is_sparse=True)
    sentence = fluid.layers.fc(input=emb, size=128, act='tanh')

    rnn = fluid.layers.DynamicRNN()
    with rnn.block():
        word = rnn.step_input(sentence)
        prev = rnn.memory(shape=[128])
        hidden = fluid.layers.fc(input=[word, prev], size=128, act='relu')
        rnn.update_memory(prev, hidden)
        rnn.output(hidden)

    last = fluid.layers.sequence_last_step(rnn())
    out = fluid.layers.fc(input=last, size=2, act='softmax')
    return out


# 定義長短期記憶網絡 
開發者ID:yeyupiaoling,項目名稱:LearnPaddle2,代碼行數:20,代碼來源:text_classification.py

示例4: lstm_net

# 需要導入模塊: import paddle [as 別名]
# 或者: from paddle import fluid [as 別名]
def lstm_net(ipt, input_dim):
    # 以數據的IDs作為輸入
    emb = fluid.layers.embedding(input=ipt, size=[input_dim, 128], is_sparse=True)

    # 第一個全連接層
    fc1 = fluid.layers.fc(input=emb, size=128)
    # 進行一個長短期記憶操作
    lstm1, _ = fluid.layers.dynamic_lstm(input=fc1, size=128)

    # 第一個最大序列池操作
    fc2 = fluid.layers.sequence_pool(input=fc1, pool_type='max')
    # 第二個最大序列池操作
    lstm2 = fluid.layers.sequence_pool(input=lstm1, pool_type='max')

    # 以softmax作為全連接的輸出層,大小為2,也就是正負麵
    out = fluid.layers.fc(input=[fc2, lstm2], size=2, act='softmax')
    return out


# 定義輸入數據, lod_level不為0指定輸入數據為序列數據 
開發者ID:yeyupiaoling,項目名稱:LearnPaddle2,代碼行數:22,代碼來源:text_classification.py

示例5: infer

# 需要導入模塊: import paddle [as 別名]
# 或者: from paddle import fluid [as 別名]
def infer(save_dirname=None):
    place = fluid.CPUPlace()
    exe = fluid.Executor(place)
    inference_scope = fluid.core.Scope()
    with fluid.scope_guard(inference_scope):
        [inference_program, feed_target_names, fetch_targets] = (
            fluid.io.load_inference_model(save_dirname, exe))
        test_reader = paddle.batch(paddle.dataset.uci_housing.test(), batch_size=20)

        test_data = six.next(test_reader())
        test_feat = numpy.array(list(map(lambda x: x[0], test_data))).astype("float32")
        test_label = numpy.array(list(map(lambda x: x[1], test_data))).astype("float32")

        results = exe.run(inference_program,
                          feed={feed_target_names[0]: numpy.array(test_feat)},
                          fetch_list=fetch_targets)
        print("infer results: ", results[0])
        print("ground truth: ", test_label)


# Run train and infer. 
開發者ID:yeyupiaoling,項目名稱:LearnPaddle2,代碼行數:23,代碼來源:test_paddle.py

示例6: ChannelSE

# 需要導入模塊: import paddle [as 別名]
# 或者: from paddle import fluid [as 別名]
def ChannelSE(self, input, num_channels, reduction_ratio=16):
        """
        Squeeze and Excitation block, reimplementation inspired by
            https://github.com/Cadene/pretrained-models.pytorch/blob/master/pretrainedmodels/models/senet.py
        """
        pool = fluid.layers.pool2d(
            input=input, pool_size=0, pool_type='avg', global_pooling=True)
        stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
        squeeze = fluid.layers.fc(input=pool,
                                size=num_channels // reduction_ratio,
                                act='relu',
                                param_attr=fluid.param_attr.ParamAttr(
                                    initializer=fluid.initializer.Uniform(
                                        -stdv, stdv)))
        stdv = 1.0 / math.sqrt(squeeze.shape[1] * 1.0)
        excitation = fluid.layers.fc(input=squeeze,
                                    size=num_channels,
                                    act='sigmoid',
                                    param_attr=fluid.param_attr.ParamAttr(
                                        initializer=fluid.initializer.Uniform(
                                            -stdv, stdv)))
        scale = fluid.layers.elementwise_mul(x=input, y=excitation, axis=0)
        return scale 
開發者ID:qixuxiang,項目名稱:Baidu_Lane_Segmentation,代碼行數:25,代碼來源:multires_unet.py

示例7: multi_res_block

# 需要導入模塊: import paddle [as 別名]
# 或者: from paddle import fluid [as 別名]
def multi_res_block(self, inputs,filter_size1,filter_size2,filter_size3,filter_size4):

        conv1 = conv_bn_layer(
        input=inputs, num_filters=filter_size1, filter_size=3, stride=1, act='relu')

        conv2 = conv_bn_layer(
        input=conv1, num_filters=filter_size2, filter_size=3, stride=1, act='relu')

        conv3 = conv_bn_layer(
        input=conv2, num_filters=filter_size3, filter_size=3, stride=1, act='relu')

        conv = conv_bn_layer(
        input=inputs, num_filters=filter_size4, filter_size=1, stride=1, act='relu')

        concat = fluid.layers.concat([conv1, conv2, conv3], axis = 1) #merge in channel

        add = fluid.layers.elementwise_add(concat,y=conv)

        return add 
開發者ID:qixuxiang,項目名稱:Baidu_Lane_Segmentation,代碼行數:21,代碼來源:multires_unet.py

示例8: res_path

# 需要導入模塊: import paddle [as 別名]
# 或者: from paddle import fluid [as 別名]
def res_path(self, inputs,filter_size,path_number):
        def block(x,fl):
            conv1 = conv_bn_layer(
            input=inputs, num_filters=filter_size, filter_size=3, stride=1, act='relu')

            conv2 = conv_bn_layer(
            input=inputs, num_filters=filter_size, filter_size=1, stride=1, act='relu')

            add = fluid.layers.elementwise_add(conv1,conv2)

            return add

        cnn = block(inputs, filter_size)
        if path_number <= 3:
            cnn = block(cnn,filter_size)
            if path_number <= 2:
                cnn = block(cnn,filter_size)
                if path_number <= 1:
                    cnn = block(cnn,filter_size)

        return cnn 
開發者ID:qixuxiang,項目名稱:Baidu_Lane_Segmentation,代碼行數:23,代碼來源:multires_unet.py

示例9: DenseBlock

# 需要導入模塊: import paddle [as 別名]
# 或者: from paddle import fluid [as 別名]
def DenseBlock(self, inputs, outdim):
        input_shape = inputs.shape
        bn = fluid.layers.batch_norm(input=inputs, epsilon=2e-05,fuse_with_relu=True)
        conv1 = conv_bn_layer(
        input=bn, num_filters=outdim, filter_size=3, stride=1, act='relu')
        if input_shape[1] != outdim:
            shortcut = conv_bn_layer(
            input=inputs, num_filters=outdim, filter_size=1, stride=1, act='relu')
        else:
            shortcut = inputs
        result1 = fluid.layers.elementwise_add(conv1, shortcut)

        bn = fluid.layers.batch_norm(input=result1, epsilon=2e-05,fuse_with_relu=True)
        conv2 = conv_bn_layer(
        input=bn, num_filters=outdim, filter_size=3, stride=1, act='relu')

        result = fluid.layers.elementwise_add(result1, conv2)

        result = fluid.layers.elementwise_add(result, shortcut)

        result = fluid.layers.relu(result)

        return result 
開發者ID:qixuxiang,項目名稱:Baidu_Lane_Segmentation,代碼行數:25,代碼來源:dense_unet.py

示例10: Inception_dilation

# 需要導入模塊: import paddle [as 別名]
# 或者: from paddle import fluid [as 別名]
def Inception_dilation(self, inputs, channels):
        conv3 = conv_bn_layer(input=inputs, num_filters=channels,
        filter_size=3, stride=1, dilation=1, act='relu')
        print("conv3.shape----------",conv3.shape)

        conv5 = conv_bn_layer(input=inputs, num_filters=channels,
        filter_size=3, stride=1, dilation=2, act='relu')
        print("conv5.shape----------",conv5.shape)
        conv7 = conv_bn_layer(input=inputs, num_filters=channels,
        filter_size=3, stride=1, dilation=4, act='relu')
        print("conv7.shape----------",conv7.shape)
        conv9 = conv_bn_layer(input=inputs, num_filters=channels,
        filter_size=3, stride=1, dilation=6, act='relu')
        print("conv9.shape----------",conv9.shape)

        merge2 = fluid.layers.concat([conv3, conv5, conv7, conv9], axis = 1)
        return merge2 
開發者ID:qixuxiang,項目名稱:Baidu_Lane_Segmentation,代碼行數:19,代碼來源:PAN.py

示例11: GlobalAttentionUpsample

# 需要導入模塊: import paddle [as 別名]
# 或者: from paddle import fluid [as 別名]
def GlobalAttentionUpsample(self, inputs_low, inputs_high, channels):
        #inputs_low:低層次信息輸入
        #inputs_high:高層次信息輸入
        print('inputs_high.shape---------',inputs_high.shape)
        conv3 = conv_bn_layer(input=inputs_low, num_filters=3*channels,
        filter_size=3, stride=1,dilation=1, act='relu')
        gap = fluid.layers.pool2d(inputs_high,pool_type='avg',global_pooling=True)

        print('gap.shape------------', gap.shape)
        h = conv3.shape[2]
        w = conv3.shape[3]
        gap = fluid.layers.resize_bilinear(input = gap,out_shape = [h,w] )

        conv1conv3 = fluid.layers.elementwise_mul(gap, conv3)
        '''
        conv1 = conv_bn_layer(input=gap, num_filters=3*channels,
        filter_size=1, stride=1,dilation=1, act='relu')
        print("conv1.shape---------",conv1.shape)
        '''
        #out = fluid.layers.sequence_concat(input=[conv1conv3, inputs_high])
        out = fluid.layers.concat([conv1conv3, inputs_high], axis = 1)

        return out 
開發者ID:qixuxiang,項目名稱:Baidu_Lane_Segmentation,代碼行數:25,代碼來源:PAN.py

示例12: __init__

# 需要導入模塊: import paddle [as 別名]
# 或者: from paddle import fluid [as 別名]
def __init__(self,):
        self.name_scope = ""
        self.decode_channel = 48
        self.encode_channel = 256
        self.label_number = 9
        self.bn_momentum = 0.99
        self.dropout_keep_prop = 0.9
        self.is_train = True
        self.op_results = {}
        self.default_epsilon = 1e-3
        self.default_norm_type = 'bn'
        self.default_group_number = 32
        self.depthwise_use_cudnn = False
        self.bn_regularizer = fluid.regularizer.L2DecayRegularizer(regularization_coeff=0.0)
        self.depthwise_regularizer = fluid.regularizer.L2DecayRegularizer(
            regularization_coeff=0.0)
        self.clean() 
開發者ID:qixuxiang,項目名稱:Baidu_Lane_Segmentation,代碼行數:19,代碼來源:deeplabv3p.py

示例13: group_norm

# 需要導入模塊: import paddle [as 別名]
# 或者: from paddle import fluid [as 別名]
def group_norm(self,input, G, eps=1e-5, param_attr=None, bias_attr=None):
        N, C, H, W = input.shape
        if C % G != 0:
            # print "group can not divide channle:", C, G
            for d in range(10):
                for t in [d, -d]:
                    if G + t <= 0: continue
                    if C % (G + t) == 0:
                        G = G + t
                        break
                if C % G == 0:
                    # print "use group size:", G
                    break
        assert C % G == 0
        x = fluid.layers.group_norm(
            input,
            groups=G,
            param_attr=param_attr,
            bias_attr=bias_attr,
            name=self.name_scope + 'group_norm')
        return x 
開發者ID:qixuxiang,項目名稱:Baidu_Lane_Segmentation,代碼行數:23,代碼來源:deeplabv3p.py

示例14: decoder

# 需要導入模塊: import paddle [as 別名]
# 或者: from paddle import fluid [as 別名]
def decoder(self,encode_data, decode_shortcut):
        with self.scope('decoder'):
            with self.scope('concat'):
                decode_shortcut = self.bn_relu(
                    self.conv(
                        decode_shortcut, self.decode_channel, 1, 1, groups=1, padding=0))
                encode_data = fluid.layers.resize_bilinear(
                    encode_data, decode_shortcut.shape[2:])
                encode_data = fluid.layers.concat(
                    [encode_data, decode_shortcut], axis=1)
                self.append_op_result(encode_data, 'concat')
            with self.scope("separable_conv1"):
                encode_data = self.seq_conv(
                    encode_data, self.encode_channel, 1, 3, dilation=1, act=self.relu)
            with self.scope("separable_conv2"):
                encode_data = self.seq_conv(
                    encode_data, self.encode_channel, 1, 3, dilation=1, act=self.relu)
            return encode_data 
開發者ID:qixuxiang,項目名稱:Baidu_Lane_Segmentation,代碼行數:20,代碼來源:deeplabv3p.py

示例15: xception_downsample_block

# 需要導入模塊: import paddle [as 別名]
# 或者: from paddle import fluid [as 別名]
def xception_downsample_block(self,x,channels,top_relu=False):
        if top_relu:
            x = fluid.layers.relu(x)

        x0_d = depthwise_bn_layer(input=x, filter_size=3,  dilation=1,
        act=None)
        x0_p = conv_bn_layer(input=x0_d, num_filters=channels, filter_size=1,
        act='relu')
        x1_d = depthwise_bn_layer(input=x0_p, filter_size=3,  dilation=1,
        act=None)
        x1_p = conv_bn_layer(input=x1_d, num_filters=channels, filter_size=1,
        act='relu')
        x2_d = depthwise_bn_layer(input=x1_p, filter_size=3, stride=2, dilation=1,
        act=None)

        x2_p = conv_bn_layer(input=x2_d, num_filters=channels, filter_size=1,
        act=None)

        return x2_p 
開發者ID:qixuxiang,項目名稱:Baidu_Lane_Segmentation,代碼行數:21,代碼來源:deeplabv3p_ours.py


注:本文中的paddle.fluid方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。