當前位置: 首頁>>代碼示例>>Python>>正文


Python fluid.Program方法代碼示例

本文整理匯總了Python中paddle.fluid.Program方法的典型用法代碼示例。如果您正苦於以下問題:Python fluid.Program方法的具體用法?Python fluid.Program怎麽用?Python fluid.Program使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在paddle.fluid的用法示例。


在下文中一共展示了fluid.Program方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: extract_weights

# 需要導入模塊: from paddle import fluid [as 別名]
# 或者: from paddle.fluid import Program [as 別名]
def extract_weights(args):
    # add ERNIR to environment
    print('extract weights start'.center(60, '='))
    startup_prog = fluid.Program()
    test_prog = fluid.Program()
    place = fluid.CPUPlace()
    exe = fluid.Executor(place)
    exe.run(startup_prog)
    args.max_seq_len = 512
    args.use_fp16 = False
    args.num_labels = 2
    args.loss_scaling = 1.0
    ernie_config = ErnieConfig(args.ernie_config_path)
    ernie_config.print_config()
    with fluid.program_guard(test_prog, startup_prog):
        with fluid.unique_name.guard():
            create_model(
                args,
                pyreader_name='train',
                ernie_config=ernie_config)
    fluid.io.load_vars(exe, args.init_pretraining_params, main_program=test_prog, predicate=if_exist)
    state_dict = collections.OrderedDict()
    weight_map = build_weight_map()
    for ernie_name, pytorch_name in weight_map.items():
        fluid_tensor = fluid.global_scope().find_var(ernie_name).get_tensor()
        fluid_array = np.array(fluid_tensor, dtype=np.float32)
        if 'w_0' in ernie_name:
            fluid_array = fluid_array.transpose()
        state_dict[pytorch_name] = fluid_array
        print(f'{ernie_name} -> {pytorch_name} {fluid_array.shape}')
    print('extract weights done!'.center(60, '='))
    return state_dict 
開發者ID:nghuyong,項目名稱:ERNIE-Pytorch,代碼行數:34,代碼來源:convert_ernie_to_pytorch.py

示例2: test_main

# 需要導入模塊: from paddle import fluid [as 別名]
# 或者: from paddle.fluid import Program [as 別名]
def test_main(self):
        main_prog = fluid.Program()
        startup_prog = fluid.Program()
        with fluid.program_guard(main_prog, startup_prog):
            pred = fluid.data(name='pred', shape=[None, self.class_num], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
            acc = Accuracy(topk=self.topk, name=self.name)
            state = acc.add_metric_op(pred, label)

        exe = fluid.Executor(fluid.CPUPlace())
        compiled_main_prog = fluid.CompiledProgram(main_prog)

        for i in range(10):
            label, pred = self.random_pred_label()
            state_ret = exe.run(compiled_main_prog,
                                feed={'pred': pred, 'label': label},
                                fetch_list=[s.name for s in to_list(state)],
                                return_numpy=True)
            acc.update(*state_ret)
            res_m = acc.accumulate()
            res_f = accuracy(pred, label, self.topk)
            assert np.all(np.isclose(np.array(res_m), np.array(res_f), rtol=1e-3)), \
                    "Accuracy precision error: {} != {}".format(res_m, res_f)
            acc.reset()
            assert np.sum(acc.total) == 0
            assert np.sum(acc.count) == 0 
開發者ID:PaddlePaddle,項目名稱:hapi,代碼行數:28,代碼來源:test_metrics.py

示例3: prepare_distributed_context

# 需要導入模塊: from paddle import fluid [as 別名]
# 或者: from paddle.fluid import Program [as 別名]
def prepare_distributed_context(place=None):
    if place is None:
        place = fluid.CUDAPlace(ParallelEnv().dev_id) if ParallelEnv().nranks > 1 \
            else fluid.CUDAPlace(0)

    strategy = ParallelStrategy()
    strategy.nranks = ParallelEnv().nranks
    strategy.local_rank = ParallelEnv().local_rank
    strategy.trainer_endpoints = ParallelEnv().trainer_endpoints
    strategy.current_endpoint = ParallelEnv().current_endpoint

    if strategy.nranks < 2:
        return

    global _parallel_context_initialized

    if not _parallel_context_initialized and isinstance(place,
                                                        fluid.CUDAPlace):

        def _init_context():
            communicator_prog = fluid.Program()
            init_communicator(communicator_prog, strategy.local_rank,
                              strategy.nranks, True, strategy.current_endpoint,
                              strategy.trainer_endpoints)
            exe = fluid.Executor(place)
            exe.run(communicator_prog)

        if fluid.in_dygraph_mode():
            fluid.disable_dygraph()
            _init_context()
            fluid.enable_dygraph(place)
        else:
            _init_context()

    else:
        assert ("Only support CUDAPlace for now.")

    _parallel_context_initialized = True
    return strategy 
開發者ID:PaddlePaddle,項目名稱:hapi,代碼行數:41,代碼來源:distributed.py

示例4: build_program

# 需要導入模塊: from paddle import fluid [as 別名]
# 或者: from paddle.fluid import Program [as 別名]
def build_program(self):
        """
            build program
        """
        self.predict_program = fluid.Program()
        self.train_program = fluid.Program()
        with fluid.program_guard(self.predict_program):
            self.predict_inputs = layers.data(
                    name='input',
                    append_batch_size=False,
                    shape=[self.batch_size, 1],
                    dtype='int32')
            self.predict_tokens, self.predict_adjvec = self.alg.define_predict(
                    self.predict_inputs)

        with fluid.program_guard(self.train_program):
            self.train_inputs = layers.data(
                    name='input',
                    append_batch_size=False,
                    shape=[self.batch_size, 1],
                    dtype='int32')
            self.actions_to = layers.data(
                    name='actions_to',
                    append_batch_size=False,
                    shape=[self.batch_size,
                           self.num_nodes * 2],
                    dtype='int32')
            self.actions_ad = layers.data(
                    name='actions_ad',
                    append_batch_size=False,
                    shape=[self.batch_size,
                           self.num_nodes * (self.num_nodes - 1)],
                    dtype='int32')
            self.rewards = layers.data(
                name='rewards',
                append_batch_size=False,
                shape=[self.batch_size],
                dtype='float32')
            self.cost = self.alg.define_learn(
                    obs=self.train_inputs, reward=self.rewards,
                    action=[self.actions_to, self.actions_ad]) 
開發者ID:PaddlePaddle,項目名稱:AutoDL,代碼行數:43,代碼來源:autodl_agent.py

示例5: main

# 需要導入模塊: from paddle import fluid [as 別名]
# 或者: from paddle.fluid import Program [as 別名]
def main(_):
    """
        main
    """
    image_shape = [3, image_size, image_size]
    files = os.listdir(FLAGS.data_path)
    names = [each_item for each_item in files]
    np.random.shuffle(names)
    train_list = names[:9]
    test_list = names[-1]
    tokens, adjvec = utils.load_action(FLAGS.mid)

    model = CIFARModel(tokens, adjvec, image_shape)

    place = fluid.CUDAPlace(0)
    exe = fluid.Executor(place)

    startup = fluid.Program()
    train_prog = fluid.Program()
    test_prog = fluid.Program()
    train_vars = model.build_program(train_prog, startup, True)
    test_vars = model.build_program(test_prog, startup, False)
    exe.run(startup)

    train_accuracy, epoch_id = train(model, FLAGS.early_stop,
                                     train_prog, train_vars, exe, train_list)
    if epoch_id < FLAGS.early_stop:
        utils.dump_reward(FLAGS.mid, train_accuracy)
    else:
        test_accuracy = test(model, test_prog, test_vars, exe, [test_list])
        utils.dump_reward(FLAGS.mid, test_accuracy) 
開發者ID:PaddlePaddle,項目名稱:AutoDL,代碼行數:33,代碼來源:train.py

示例6: init_program

# 需要導入模塊: from paddle import fluid [as 別名]
# 或者: from paddle.fluid import Program [as 別名]
def init_program(self):
        """
        :return:
        """
        param_dict = OrderedDict()

        self.startup_program = fluid.Program()
        if self.random_seed is not None:
            self.startup_program.random_seed = self.random_seed
        self.train_program = fluid.Program()
        self.test_program = fluid.Program()
        self.evaluate_program = fluid.Program()
        self.save_inference_program = fluid.Program() 
開發者ID:baidu,項目名稱:Senta,代碼行數:15,代碼來源:base_trainer.py

示例7: append_cast_op

# 需要導入模塊: from paddle import fluid [as 別名]
# 或者: from paddle.fluid import Program [as 別名]
def append_cast_op(i, o, prog):
    """
    Append a cast op in a given Program to cast input `i` to data type `o.dtype`.
    Args:
        i (Variable): The input Variable.
        o (Variable): The output Variable.
        prog (Program): The Program to append cast op.
    """
    prog.global_block().append_op(
        type="cast",
        inputs={"X": i},
        outputs={"Out": o},
        attrs={"in_dtype": i.dtype,
               "out_dtype": o.dtype}) 
開發者ID:baidu,項目名稱:Senta,代碼行數:16,代碼來源:base_trainer.py

示例8: evaluate

# 需要導入模塊: from paddle import fluid [as 別名]
# 或者: from paddle.fluid import Program [as 別名]
def evaluate(logger, args):
    """evaluate a specific model using devset"""
    logger.info('Load data_set and vocab...')
    with open(os.path.join(args.vocab_dir, 'vocab.data'), 'rb') as fin:
        vocab = pickle.load(fin)
        logger.info('vocab size is {} and embed dim is {}'.format(vocab.size(
        ), vocab.embed_dim))
    brc_data = BRCDataset(
        args.max_p_num, args.max_p_len, args.max_q_len, dev_files=args.devset)
    logger.info('Converting text into ids...')
    brc_data.convert_to_ids(vocab)
    logger.info('Initialize the model...')

    # build model
    main_program = fluid.Program()
    startup_prog = fluid.Program()
    with fluid.program_guard(main_program, startup_prog):
        with fluid.unique_name.guard():
            avg_cost, s_probs, e_probs, match, feed_order = rc_model.rc_model(
                args.hidden_size, vocab, args)
            # initialize parameters
            if not args.use_gpu:
                place = fluid.CPUPlace()
                dev_count = int(
                    os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
            else:
                place = fluid.CUDAPlace(0)
                dev_count = fluid.core.get_cuda_device_count()

            exe = Executor(place)
            if args.load_dir:
                logger.info('load from {}'.format(args.load_dir))
                fluid.io.load_persistables(
                    exe, args.load_dir, main_program=main_program)
            else:
                logger.error('No model file to load ...')
                return

            inference_program = main_program.clone(for_test=True)
            eval_loss, bleu_rouge = validation(
                inference_program, avg_cost, s_probs, e_probs, match, feed_order,
                place, dev_count, vocab, brc_data, logger, args)
            logger.info('Dev eval result: {}'.format(bleu_rouge))
            logger.info('Predicted answers are saved to {}'.format(
                os.path.join(args.result_dir))) 
開發者ID:baidu,項目名稱:DuReader,代碼行數:47,代碼來源:run.py

示例9: predict

# 需要導入模塊: from paddle import fluid [as 別名]
# 或者: from paddle.fluid import Program [as 別名]
def predict(logger, args):
    """do inference on the test dataset """
    logger.info('Load data_set and vocab...')
    with open(os.path.join(args.vocab_dir, 'vocab.data'), 'rb') as fin:
        vocab = pickle.load(fin)
        logger.info('vocab size is {} and embed dim is {}'.format(vocab.size(
        ), vocab.embed_dim))
    brc_data = BRCDataset(
        args.max_p_num, args.max_p_len, args.max_q_len, dev_files=args.testset)
    logger.info('Converting text into ids...')
    brc_data.convert_to_ids(vocab)
    logger.info('Initialize the model...')

    # build model
    main_program = fluid.Program()
    startup_prog = fluid.Program()
    with fluid.program_guard(main_program, startup_prog):
        with fluid.unique_name.guard():
            avg_cost, s_probs, e_probs, match, feed_order = rc_model.rc_model(
                args.hidden_size, vocab, args)
            # initialize parameters
            if not args.use_gpu:
                place = fluid.CPUPlace()
                dev_count = int(
                    os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
            else:
                place = fluid.CUDAPlace(0)
                dev_count = fluid.core.get_cuda_device_count()

            exe = Executor(place)
            if args.load_dir:
                logger.info('load from {}'.format(args.load_dir))
                fluid.io.load_persistables(
                    exe, args.load_dir, main_program=main_program)
            else:
                logger.error('No model file to load ...')
                return

            inference_program = main_program.clone(for_test=True)
            eval_loss, bleu_rouge = validation(
                inference_program, avg_cost, s_probs, e_probs, match,
                feed_order, place, dev_count, vocab, brc_data, logger, args) 
開發者ID:baidu,項目名稱:DuReader,代碼行數:44,代碼來源:run.py


注:本文中的paddle.fluid.Program方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。