本文整理匯總了Python中oyaml.load方法的典型用法代碼示例。如果您正苦於以下問題:Python oyaml.load方法的具體用法?Python oyaml.load怎麽用?Python oyaml.load使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類oyaml
的用法示例。
在下文中一共展示了oyaml.load方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: load_previous_trials
# 需要導入模塊: import oyaml [as 別名]
# 或者: from oyaml import load [as 別名]
def load_previous_trials(output_name):
print('>>>>> Loading previous results')
with tf.gfile.GFile(output_name, 'r') as f:
yaml_str = f.read()
results_dict = yaml.load(yaml_str)
x0 = []
y0 = []
if results_dict:
for timestamp, scores_dict in results_dict.items():
score = scores_dict['score']
params_dict = scores_dict['input_fn_params']
params = [params_dict[d.name] for d in space]
x0.append(params)
y0.append(score)
else:
x0 = None
y0 = None
return x0, y0
示例2: load_embeddings
# 需要導入模塊: import oyaml [as 別名]
# 或者: from oyaml import load [as 別名]
def load_embeddings(file_list, emb_dir):
"""
Load saved embeddings from an embedding directory
Parameters
----------
file_list
emb_dir
Returns
-------
embeddings
ignore_idxs
"""
embeddings = []
for idx, filename in enumerate(file_list):
emb_path = os.path.join(emb_dir, os.path.splitext(filename)[0] + '.npy.gz')
with gzip.open(emb_path, 'rb') as f:
embeddings.append(np.load(f))
return embeddings
示例3: __init__
# 需要導入模塊: import oyaml [as 別名]
# 或者: from oyaml import load [as 別名]
def __init__(self, file):
"""
Parse course.yml contents into instances.
"""
self.config = Config()
self.helm = Helm()
self._dict = yaml.load(file)
self._repositories = []
self._charts = []
for name, repository in self._dict.get('repositories', {}).iteritems():
repository['name'] = name
self._repositories.append(Repository(repository))
for name, chart in self._dict.get('charts', {}).iteritems():
self._charts.append(Chart({name: chart}))
for repo in self._repositories:
type(repo)
if not self.config.local_development:
logging.debug("Installing repository: {}".format(repo))
repo.install()
self.helm.repo_update()
if not self.config.local_development:
self._compare_required_versions()
示例4: load_json
# 需要導入模塊: import oyaml [as 別名]
# 或者: from oyaml import load [as 別名]
def load_json(path, **kwargs):
# wrap json.load
with open(path) as f:
return json.load(f, **kwargs)
示例5: load_yaml
# 需要導入模塊: import oyaml [as 別名]
# 或者: from oyaml import load [as 別名]
def load_yaml(path, **kwargs):
import oyaml as yaml
with open(path) as f:
return yaml.load(f, **kwargs)
示例6: load_pickle
# 需要導入模塊: import oyaml [as 別名]
# 或者: from oyaml import load [as 別名]
def load_pickle(path, **kwargs):
# wrap pickle.load
with open(path, 'rb') as f:
return pickle.load(f, **kwargs)
示例7: test_setoverlayconfig
# 需要導入模塊: import oyaml [as 別名]
# 或者: from oyaml import load [as 別名]
def test_setoverlayconfig(self):
yamldata = '''
antivirus:
profile:
apisettree:
"scan-mode": "quick"
'http': {"options": "scan avmonitor",}
"emulator": "enable"
firewall:
policy:
67:
'name': "Testfortiosapi"
'action': "accept"
'srcaddr': [{"name": "all"}]
'dstaddr': [{"name": "all"}]
'schedule': "always"
'service': [{"name": "HTTPS"}]
"utm-status": "enable"
"profile-type": "single"
'av-profile': "apisettree"
'profile-protocol-options': "default"
'ssl-ssh-profile': "certificate-inspection"
'logtraffic': "all"
'''
yamltree = yaml.load(yamldata, Loader=yaml.SafeLoader)
yamltree['firewall']['policy'][67]['srcintf'] = [{'name': conf["sut"]["porta"]}]
yamltree['firewall']['policy'][67]['dstintf'] = [{'name': conf["sut"]["portb"]}]
self.assertTrue(fgt.setoverlayconfig(yamltree, vdom=conf['sut']['vdom']), True)
示例8: __init__
# 需要導入模塊: import oyaml [as 別名]
# 或者: from oyaml import load [as 別名]
def __init__(self, file=None):
# Fetch yaml file as ordered dict
self.file = file
self.data = {}
if self.file:
with open(self.file) as yf:
self.data = yaml.load(yf.read())
logging.debug(self.data)
else:
logging.debug("YamlEditor initialized with no file")
示例9: load_preset_config
# 需要導入模塊: import oyaml [as 別名]
# 或者: from oyaml import load [as 別名]
def load_preset_config(self, preset):
config_fpath = preset[0] + "/zynconfig.yml"
try:
with open(config_fpath,"r") as fh:
yml = fh.read()
logging.info("Loading preset config file %s => \n%s" % (config_fpath,yml))
self.preset_config = yaml.load(yml, Loader=yaml.SafeLoader)
return True
except Exception as e:
logging.error("Can't load preset config file '%s': %s" % (config_fpath,e))
return False
示例10: load_preset_config
# 需要導入模塊: import oyaml [as 別名]
# 或者: from oyaml import load [as 別名]
def load_preset_config(self, preset_dir):
config_fpath = preset_dir + "/zynconfig.yml"
try:
with open(config_fpath,"r") as fh:
yml = fh.read()
logging.info("Loading preset config file %s => \n%s" % (config_fpath,yml))
self.preset_config = yaml.load(yml, Loader=yaml.SafeLoader)
return True
except Exception as e:
logging.error("Can't load preset config file '%s': %s" % (config_fpath,e))
return False
示例11: load
# 需要導入模塊: import oyaml [as 別名]
# 或者: from oyaml import load [as 別名]
def load(self, config="keybinding"):
"""
Load key binding map from file
Parameters
----------
config : str,optional
Name of configuration to load - the file <config>.yaml will be loaded from the Zynthian config directory
Default: 'keybinding'
Returns
-------
bool
True on success
"""
logging.info("Loading key binding from {}.yaml".format(config))
config_dir = environ.get('ZYNTHIAN_CONFIG_DIR',"/zynthian/config")
config_fpath = config_dir + "/" + config + ".yaml"
try:
with open(config_fpath, "r") as fh:
yml = fh.read()
logging.debug("Loading keyboard binding config file '{}' =>\n{}".format(config_fpath,yml))
self.config = yaml.load(yml, Loader=yaml.SafeLoader)
self.parse_map()
return True
except Exception as e:
logging.debug("Loading default keyboard bindings.")
self.reset_config()
return False
示例12: test_read_input_order
# 需要導入模塊: import oyaml [as 別名]
# 或者: from oyaml import load [as 別名]
def test_read_input_order(file_groups):
"""Assert input objects are represented in the same order as configured."""
with mapchete.open(file_groups.path) as mp:
inputs = yaml.load(open(file_groups.path).read())["input"]
tile = mp.config.process_pyramid.tile(0, 0, 0)
# read written data from within MapcheteProcess object
user_process = mapchete.MapcheteProcess(
tile=tile,
params=mp.config.params_at_zoom(tile.zoom),
input=mp.config.get_inputs_for_tile(tile),
)
assert inputs.keys() == user_process.input.keys()
示例13: yamlstr_to_yaml
# 需要導入模塊: import oyaml [as 別名]
# 或者: from oyaml import load [as 別名]
def yamlstr_to_yaml(output_yamlfile, yamlstr):
with open(output_yamlfile, 'w') as fw:
load_data = yaml.load(yamlstr)
yaml_data = pyaml.dump(load_data)
fw.write(yaml_data)
示例14: parse_coarse_prediction
# 需要導入模塊: import oyaml [as 別名]
# 或者: from oyaml import load [as 別名]
def parse_coarse_prediction(pred_csv_path, yaml_path):
"""
Parse coarse-level predictions from a CSV file containing both fine-level
and coarse-level predictions (and possibly additional metadata).
Returns a Pandas DataFrame in which the column names are coarse
IDs of the form 1, 2, 3 etc.
Parameters
----------
pred_csv_path: string
Path to the CSV file containing predictions.
yaml_path: string
Path to the YAML file containing coarse taxonomy.
Returns
-------
pred_coarse_df: DataFrame
Coarse-level complete predictions.
"""
# Create dictionary to parse tags
with open(yaml_path, 'r') as stream:
yaml_dict = yaml.load(stream, Loader=yaml.Loader)
# Collect tag names as strings and map them to coarse ID pairs.
rev_coarse_dict = {"_".join([str(k), yaml_dict["coarse"][k]]): k
for k in yaml_dict["coarse"]}
# Read comma-separated values with the Pandas library
pred_df = pd.read_csv(pred_csv_path)
# Assign a predicted column to each coarse key, by using the tag as an
# intermediate hashing step.
pred_coarse_dict = {}
for c in rev_coarse_dict:
if c in pred_df:
pred_coarse_dict[str(rev_coarse_dict[c])] = pred_df[c]
else:
pred_coarse_dict[str(rev_coarse_dict[c])] = np.zeros((len(pred_df),))
warnings.warn("Column not found: " + c)
# Copy over the audio filename strings corresponding to each sample.
pred_coarse_dict["audio_filename"] = pred_df["audio_filename"]
# Build a new Pandas DataFrame with coarse keys as column names.
pred_coarse_df = pd.DataFrame.from_dict(pred_coarse_dict)
# Return output in DataFrame format.
# The column names are of the form 1, 2, 3, etc.
return pred_coarse_df.sort_values('audio_filename')