當前位置: 首頁>>代碼示例>>Python>>正文


Python ot.sinkhorn方法代碼示例

本文整理匯總了Python中ot.sinkhorn方法的典型用法代碼示例。如果您正苦於以下問題:Python ot.sinkhorn方法的具體用法?Python ot.sinkhorn怎麽用?Python ot.sinkhorn使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在ot的用法示例。


在下文中一共展示了ot.sinkhorn方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_sinkhorn

# 需要導入模塊: import ot [as 別名]
# 或者: from ot import sinkhorn [as 別名]
def test_sinkhorn():
    # test sinkhorn
    n = 100
    rng = np.random.RandomState(0)

    x = rng.randn(n, 2)
    u = ot.utils.unif(n)

    M = ot.dist(x, x)

    G = ot.sinkhorn(u, u, M, 1, stopThr=1e-10)

    # check constratints
    np.testing.assert_allclose(
        u, G.sum(1), atol=1e-05)  # cf convergence sinkhorn
    np.testing.assert_allclose(
        u, G.sum(0), atol=1e-05)  # cf convergence sinkhorn 
開發者ID:PythonOT,項目名稱:POT,代碼行數:19,代碼來源:test_bregman.py

示例2: test_sinkhorn_variants

# 需要導入模塊: import ot [as 別名]
# 或者: from ot import sinkhorn [as 別名]
def test_sinkhorn_variants():
    # test sinkhorn
    n = 100
    rng = np.random.RandomState(0)

    x = rng.randn(n, 2)
    u = ot.utils.unif(n)

    M = ot.dist(x, x)

    G0 = ot.sinkhorn(u, u, M, 1, method='sinkhorn', stopThr=1e-10)
    Gs = ot.sinkhorn(u, u, M, 1, method='sinkhorn_stabilized', stopThr=1e-10)
    Ges = ot.sinkhorn(
        u, u, M, 1, method='sinkhorn_epsilon_scaling', stopThr=1e-10)
    G_green = ot.sinkhorn(u, u, M, 1, method='greenkhorn', stopThr=1e-10)

    # check values
    np.testing.assert_allclose(G0, Gs, atol=1e-05)
    np.testing.assert_allclose(G0, Ges, atol=1e-05)
    np.testing.assert_allclose(G0, G_green, atol=1e-5)
    print(G0, G_green) 
開發者ID:PythonOT,項目名稱:POT,代碼行數:23,代碼來源:test_bregman.py

示例3: test_sinkhorn_variants_log

# 需要導入模塊: import ot [as 別名]
# 或者: from ot import sinkhorn [as 別名]
def test_sinkhorn_variants_log():
    # test sinkhorn
    n = 100
    rng = np.random.RandomState(0)

    x = rng.randn(n, 2)
    u = ot.utils.unif(n)

    M = ot.dist(x, x)

    G0, log0 = ot.sinkhorn(u, u, M, 1, method='sinkhorn', stopThr=1e-10, log=True)
    Gs, logs = ot.sinkhorn(u, u, M, 1, method='sinkhorn_stabilized', stopThr=1e-10, log=True)
    Ges, loges = ot.sinkhorn(
        u, u, M, 1, method='sinkhorn_epsilon_scaling', stopThr=1e-10, log=True)
    G_green, loggreen = ot.sinkhorn(u, u, M, 1, method='greenkhorn', stopThr=1e-10, log=True)

    # check values
    np.testing.assert_allclose(G0, Gs, atol=1e-05)
    np.testing.assert_allclose(G0, Ges, atol=1e-05)
    np.testing.assert_allclose(G0, G_green, atol=1e-5)
    print(G0, G_green) 
開發者ID:PythonOT,項目名稱:POT,代碼行數:23,代碼來源:test_bregman.py

示例4: test_barycenter_stabilization

# 需要導入模塊: import ot [as 別名]
# 或者: from ot import sinkhorn [as 別名]
def test_barycenter_stabilization():
    n_bins = 100  # nb bins

    # Gaussian distributions
    a1 = ot.datasets.make_1D_gauss(n_bins, m=30, s=10)  # m= mean, s= std
    a2 = ot.datasets.make_1D_gauss(n_bins, m=40, s=10)

    # creating matrix A containing all distributions
    A = np.vstack((a1, a2)).T

    # loss matrix + normalization
    M = ot.utils.dist0(n_bins)
    M /= M.max()

    alpha = 0.5  # 0<=alpha<=1
    weights = np.array([1 - alpha, alpha])

    # wasserstein
    reg = 1e-2
    bar_stable = ot.bregman.barycenter(A, M, reg, weights,
                                       method="sinkhorn_stabilized",
                                       stopThr=1e-8, verbose=True)
    bar = ot.bregman.barycenter(A, M, reg, weights, method="sinkhorn",
                                stopThr=1e-8, verbose=True)
    np.testing.assert_allclose(bar, bar_stable) 
開發者ID:PythonOT,項目名稱:POT,代碼行數:27,代碼來源:test_bregman.py

示例5: test_empirical_sinkhorn_divergence

# 需要導入模塊: import ot [as 別名]
# 或者: from ot import sinkhorn [as 別名]
def test_empirical_sinkhorn_divergence():
    # Test sinkhorn divergence
    n = 10
    a = ot.unif(n)
    b = ot.unif(n)
    X_s = np.reshape(np.arange(n), (n, 1))
    X_t = np.reshape(np.arange(0, n * 2, 2), (n, 1))
    M = ot.dist(X_s, X_t)
    M_s = ot.dist(X_s, X_s)
    M_t = ot.dist(X_t, X_t)

    emp_sinkhorn_div = ot.bregman.empirical_sinkhorn_divergence(X_s, X_t, 1)
    sinkhorn_div = (ot.sinkhorn2(a, b, M, 1) - 1 / 2 * ot.sinkhorn2(a, a, M_s, 1) - 1 / 2 * ot.sinkhorn2(b, b, M_t, 1))

    emp_sinkhorn_div_log, log_es = ot.bregman.empirical_sinkhorn_divergence(X_s, X_t, 1, log=True)
    sink_div_log_ab, log_s_ab = ot.sinkhorn2(a, b, M, 1, log=True)
    sink_div_log_a, log_s_a = ot.sinkhorn2(a, a, M_s, 1, log=True)
    sink_div_log_b, log_s_b = ot.sinkhorn2(b, b, M_t, 1, log=True)
    sink_div_log = sink_div_log_ab - 1 / 2 * (sink_div_log_a + sink_div_log_b)

    # check constratints
    np.testing.assert_allclose(
        emp_sinkhorn_div, sinkhorn_div, atol=1e-05)  # cf conv emp sinkhorn
    np.testing.assert_allclose(
        emp_sinkhorn_div_log, sink_div_log, atol=1e-05)  # cf conv emp sinkhorn 
開發者ID:PythonOT,項目名稱:POT,代碼行數:27,代碼來源:test_bregman.py

示例6: test_stabilized_vs_sinkhorn_multidim

# 需要導入模塊: import ot [as 別名]
# 或者: from ot import sinkhorn [as 別名]
def test_stabilized_vs_sinkhorn_multidim():
    # test if stable version matches sinkhorn
    # for multidimensional inputs
    n = 100

    # Gaussian distributions
    a = ot.datasets.make_1D_gauss(n, m=20, s=5)  # m= mean, s= std
    b1 = ot.datasets.make_1D_gauss(n, m=60, s=8)
    b2 = ot.datasets.make_1D_gauss(n, m=30, s=4)

    # creating matrix A containing all distributions
    b = np.vstack((b1, b2)).T

    M = ot.utils.dist0(n)
    M /= np.median(M)
    epsilon = 0.1
    G, log = ot.bregman.sinkhorn(a, b, M, reg=epsilon,
                                 method="sinkhorn_stabilized",
                                 log=True)
    G2, log2 = ot.bregman.sinkhorn(a, b, M, epsilon,
                                   method="sinkhorn", log=True)

    np.testing.assert_allclose(G, G2) 
開發者ID:PythonOT,項目名稱:POT,代碼行數:25,代碼來源:test_bregman.py

示例7: test_screenkhorn

# 需要導入模塊: import ot [as 別名]
# 或者: from ot import sinkhorn [as 別名]
def test_screenkhorn():
    # test screenkhorn
    rng = np.random.RandomState(0)
    n = 100
    a = ot.unif(n)
    b = ot.unif(n)

    x = rng.randn(n, 2)
    M = ot.dist(x, x)
    # sinkhorn
    G_sink = ot.sinkhorn(a, b, M, 1e-03)
    # screenkhorn
    G_screen = ot.bregman.screenkhorn(a, b, M, 1e-03, uniform=True, verbose=True)
    # check marginals
    np.testing.assert_allclose(G_sink.sum(0), G_screen.sum(0), atol=1e-02)
    np.testing.assert_allclose(G_sink.sum(1), G_screen.sum(1), atol=1e-02) 
開發者ID:PythonOT,項目名稱:POT,代碼行數:18,代碼來源:test_bregman.py

示例8: gw_imports

# 需要導入模塊: import ot [as 別名]
# 或者: from ot import sinkhorn [as 別名]
def gw_imports(use_gpu):
    global bregman, gwggrad, gwloss, cdist
    if use_gpu:
        print('Using GPU in Gromov-Wasserstein computation')
        global cm, pairwiseEuclideanGPU, init_matrix, cosine_distance_gpu, sinkhorn
        import cudamat as cm
        from ot.gpu import bregman
        from ot.gpu.da import pairwiseEuclideanGPU
        from gpu_utils import cdist
        from gromov_gpu import gwggrad, gwloss, init_matrix, sinkhorn
    else:
        print('*NOT* Using GPU in Gromov-Wasserstein computation')
        from ot import bregman
        from ot.gromov import gwggrad, gwloss 
開發者ID:dmelis,項目名稱:otalign,代碼行數:16,代碼來源:gw_optim.py

示例9: test_smooth_ot_dual

# 需要導入模塊: import ot [as 別名]
# 或者: from ot import sinkhorn [as 別名]
def test_smooth_ot_dual():

    # get data
    n = 100
    rng = np.random.RandomState(0)

    x = rng.randn(n, 2)
    u = ot.utils.unif(n)

    M = ot.dist(x, x)

    with pytest.raises(NotImplementedError):
        Gl2, log = ot.smooth.smooth_ot_dual(u, u, M, 1, reg_type='none')

    Gl2, log = ot.smooth.smooth_ot_dual(u, u, M, 1, reg_type='l2', log=True, stopThr=1e-10)

    # check constratints
    np.testing.assert_allclose(
        u, Gl2.sum(1), atol=1e-05)  # cf convergence sinkhorn
    np.testing.assert_allclose(
        u, Gl2.sum(0), atol=1e-05)  # cf convergence sinkhorn

    # kl regyularisation
    G = ot.smooth.smooth_ot_dual(u, u, M, 1, reg_type='kl', stopThr=1e-10)

    # check constratints
    np.testing.assert_allclose(
        u, G.sum(1), atol=1e-05)  # cf convergence sinkhorn
    np.testing.assert_allclose(
        u, G.sum(0), atol=1e-05)  # cf convergence sinkhorn

    G2 = ot.sinkhorn(u, u, M, 1, stopThr=1e-10)
    np.testing.assert_allclose(G, G2, atol=1e-05) 
開發者ID:PythonOT,項目名稱:POT,代碼行數:35,代碼來源:test_smooth.py

示例10: test_smooth_ot_semi_dual

# 需要導入模塊: import ot [as 別名]
# 或者: from ot import sinkhorn [as 別名]
def test_smooth_ot_semi_dual():

    # get data
    n = 100
    rng = np.random.RandomState(0)

    x = rng.randn(n, 2)
    u = ot.utils.unif(n)

    M = ot.dist(x, x)

    with pytest.raises(NotImplementedError):
        Gl2, log = ot.smooth.smooth_ot_semi_dual(u, u, M, 1, reg_type='none')

    Gl2, log = ot.smooth.smooth_ot_semi_dual(u, u, M, 1, reg_type='l2', log=True, stopThr=1e-10)

    # check constratints
    np.testing.assert_allclose(
        u, Gl2.sum(1), atol=1e-05)  # cf convergence sinkhorn
    np.testing.assert_allclose(
        u, Gl2.sum(0), atol=1e-05)  # cf convergence sinkhorn

    # kl regyularisation
    G = ot.smooth.smooth_ot_semi_dual(u, u, M, 1, reg_type='kl', stopThr=1e-10)

    # check constratints
    np.testing.assert_allclose(
        u, G.sum(1), atol=1e-05)  # cf convergence sinkhorn
    np.testing.assert_allclose(
        u, G.sum(0), atol=1e-05)  # cf convergence sinkhorn

    G2 = ot.sinkhorn(u, u, M, 1, stopThr=1e-10)
    np.testing.assert_allclose(G, G2, atol=1e-05) 
開發者ID:PythonOT,項目名稱:POT,代碼行數:35,代碼來源:test_smooth.py

示例11: test_gpu_old_doctests

# 需要導入模塊: import ot [as 別名]
# 或者: from ot import sinkhorn [as 別名]
def test_gpu_old_doctests():
    a = [.5, .5]
    b = [.5, .5]
    M = [[0., 1.], [1., 0.]]
    G = ot.sinkhorn(a, b, M, 1)
    np.testing.assert_allclose(G, np.array([[0.36552929, 0.13447071],
                                            [0.13447071, 0.36552929]])) 
開發者ID:PythonOT,項目名稱:POT,代碼行數:9,代碼來源:test_gpu.py

示例12: test_gpu_sinkhorn

# 需要導入模塊: import ot [as 別名]
# 或者: from ot import sinkhorn [as 別名]
def test_gpu_sinkhorn():

    rng = np.random.RandomState(0)

    for n_samples in [50, 100, 500, 1000]:
        a = rng.rand(n_samples // 4, 100)
        b = rng.rand(n_samples, 100)

        wa = ot.unif(n_samples // 4)
        wb = ot.unif(n_samples)

        wb2 = np.random.rand(n_samples, 20)
        wb2 /= wb2.sum(0, keepdims=True)

        M = ot.dist(a.copy(), b.copy())
        M2 = ot.gpu.dist(a.copy(), b.copy(), to_numpy=False)

        reg = 1

        G = ot.sinkhorn(wa, wb, M, reg)
        G1 = ot.gpu.sinkhorn(wa, wb, M, reg)

        np.testing.assert_allclose(G1, G, rtol=1e-10)

        # run all on gpu
        ot.gpu.sinkhorn(wa, wb, M2, reg, to_numpy=False, log=True)

        # run sinkhorn for multiple targets
        ot.gpu.sinkhorn(wa, wb2, M2, reg, to_numpy=False, log=True) 
開發者ID:PythonOT,項目名稱:POT,代碼行數:31,代碼來源:test_gpu.py

示例13: test_sinkhorn_empty

# 需要導入模塊: import ot [as 別名]
# 或者: from ot import sinkhorn [as 別名]
def test_sinkhorn_empty():
    # test sinkhorn
    n = 100
    rng = np.random.RandomState(0)

    x = rng.randn(n, 2)
    u = ot.utils.unif(n)

    M = ot.dist(x, x)

    G, log = ot.sinkhorn([], [], M, 1, stopThr=1e-10, verbose=True, log=True)
    # check constratints
    np.testing.assert_allclose(u, G.sum(1), atol=1e-05)
    np.testing.assert_allclose(u, G.sum(0), atol=1e-05)

    G, log = ot.sinkhorn([], [], M, 1, stopThr=1e-10,
                         method='sinkhorn_stabilized', verbose=True, log=True)
    # check constratints
    np.testing.assert_allclose(u, G.sum(1), atol=1e-05)
    np.testing.assert_allclose(u, G.sum(0), atol=1e-05)

    G, log = ot.sinkhorn(
        [], [], M, 1, stopThr=1e-10, method='sinkhorn_epsilon_scaling',
        verbose=True, log=True)
    # check constratints
    np.testing.assert_allclose(u, G.sum(1), atol=1e-05)
    np.testing.assert_allclose(u, G.sum(0), atol=1e-05)

    # test empty weights greenkhorn
    ot.sinkhorn([], [], M, 1, method='greenkhorn', stopThr=1e-10, log=True) 
開發者ID:PythonOT,項目名稱:POT,代碼行數:32,代碼來源:test_bregman.py

示例14: test_implemented_methods

# 需要導入模塊: import ot [as 別名]
# 或者: from ot import sinkhorn [as 別名]
def test_implemented_methods():
    IMPLEMENTED_METHODS = ['sinkhorn', 'sinkhorn_stabilized']
    ONLY_1D_methods = ['greenkhorn', 'sinkhorn_epsilon_scaling']
    NOT_VALID_TOKENS = ['foo']
    # test generalized sinkhorn for unbalanced OT barycenter
    n = 3
    rng = np.random.RandomState(42)

    x = rng.randn(n, 2)
    a = ot.utils.unif(n)

    # make dists unbalanced
    b = ot.utils.unif(n)
    A = rng.rand(n, 2)
    M = ot.dist(x, x)
    epsilon = 1.

    for method in IMPLEMENTED_METHODS:
        ot.bregman.sinkhorn(a, b, M, epsilon, method=method)
        ot.bregman.sinkhorn2(a, b, M, epsilon, method=method)
        ot.bregman.barycenter(A, M, reg=epsilon, method=method)
    with pytest.raises(ValueError):
        for method in set(NOT_VALID_TOKENS):
            ot.bregman.sinkhorn(a, b, M, epsilon, method=method)
            ot.bregman.sinkhorn2(a, b, M, epsilon, method=method)
            ot.bregman.barycenter(A, M, reg=epsilon, method=method)
    for method in ONLY_1D_methods:
        ot.bregman.sinkhorn(a, b, M, epsilon, method=method)
        with pytest.raises(ValueError):
            ot.bregman.sinkhorn2(a, b, M, epsilon, method=method) 
開發者ID:PythonOT,項目名稱:POT,代碼行數:32,代碼來源:test_bregman.py

示例15: test_sag_asgd_sinkhorn

# 需要導入模塊: import ot [as 別名]
# 或者: from ot import sinkhorn [as 別名]
def test_sag_asgd_sinkhorn():
    # test all algorithms
    n = 15
    reg = 1
    nb_iter = 100000
    rng = np.random.RandomState(0)

    x = rng.randn(n, 2)
    u = ot.utils.unif(n)
    M = ot.dist(x, x)

    G_asgd = ot.stochastic.solve_semi_dual_entropic(u, u, M, reg, "asgd",
                                                    numItermax=nb_iter)
    G_sag = ot.stochastic.solve_semi_dual_entropic(u, u, M, reg, "sag",
                                                   numItermax=nb_iter)
    G_sinkhorn = ot.sinkhorn(u, u, M, reg)

    # check constratints
    np.testing.assert_allclose(
        G_sag.sum(1), G_sinkhorn.sum(1), atol=1e-03)
    np.testing.assert_allclose(
        G_sag.sum(0), G_sinkhorn.sum(0), atol=1e-03)
    np.testing.assert_allclose(
        G_asgd.sum(1), G_sinkhorn.sum(1), atol=1e-03)
    np.testing.assert_allclose(
        G_asgd.sum(0), G_sinkhorn.sum(0), atol=1e-03)
    np.testing.assert_allclose(
        G_sag, G_sinkhorn, atol=1e-03)  # cf convergence sag
    np.testing.assert_allclose(
        G_asgd, G_sinkhorn, atol=1e-03)  # cf convergence asgd


#############################################################################
# COMPUTE TEST FOR DUAL PROBLEM
#############################################################################

#############################################################################
#
# TEST SGD algorithm
# ---------------------------------------------
# 2 identical discrete measures u defined on the same space with a
# regularization term, a batch_size and a number of iteration 
開發者ID:PythonOT,項目名稱:POT,代碼行數:44,代碼來源:test_stochastic.py


注:本文中的ot.sinkhorn方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。