當前位置: 首頁>>代碼示例>>Python>>正文


Python ot.emd方法代碼示例

本文整理匯總了Python中ot.emd方法的典型用法代碼示例。如果您正苦於以下問題:Python ot.emd方法的具體用法?Python ot.emd怎麽用?Python ot.emd使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在ot的用法示例。


在下文中一共展示了ot.emd方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_emd_emd2

# 需要導入模塊: import ot [as 別名]
# 或者: from ot import emd [as 別名]
def test_emd_emd2():
    # test emd and emd2 for simple identity
    n = 100
    rng = np.random.RandomState(0)

    x = rng.randn(n, 2)
    u = ot.utils.unif(n)

    M = ot.dist(x, x)

    G = ot.emd(u, u, M)

    # check G is identity
    np.testing.assert_allclose(G, np.eye(n) / n)
    # check constraints
    np.testing.assert_allclose(u, G.sum(1))  # cf convergence sinkhorn
    np.testing.assert_allclose(u, G.sum(0))  # cf convergence sinkhorn

    w = ot.emd2(u, u, M)
    # check loss=0
    np.testing.assert_allclose(w, 0) 
開發者ID:PythonOT,項目名稱:POT,代碼行數:23,代碼來源:test_ot.py

示例2: test_wass_1d

# 需要導入模塊: import ot [as 別名]
# 或者: from ot import emd [as 別名]
def test_wass_1d():
    # test emd1d gives similar results as emd
    n = 20
    m = 30
    rng = np.random.RandomState(0)
    u = rng.randn(n, 1)
    v = rng.randn(m, 1)

    M = ot.dist(u, v, metric='sqeuclidean')

    G, log = ot.emd([], [], M, log=True)
    wass = log["cost"]

    wass1d = ot.wasserstein_1d(u, v, [], [], p=2.)

    # check loss is similar
    np.testing.assert_allclose(np.sqrt(wass), wass1d) 
開發者ID:PythonOT,項目名稱:POT,代碼行數:19,代碼來源:test_ot.py

示例3: opt_transport

# 需要導入模塊: import ot [as 別名]
# 或者: from ot import emd [as 別名]
def opt_transport(supply, demand, costs):
  """ A wrapper for the EMD computation using the Optimal Transport (ot) package.
      if emd_only is False, it only returns the emd value. Else it returns the transport
      matrix and the minimum value of the objective.
  """
  supply = supply.astype(np.float64)
  demand = demand.astype(np.float64)
  tot_supply = supply.sum()
  tot_demand = demand.sum()
#   assert tot_supply == tot_demand
  supply = supply / tot_supply
  demand = demand / tot_demand
  # Now solve the problem
  T = ot.emd(supply, demand, costs)
  T = tot_supply * T
  min_val = np.sum(T * costs)
  emd = min_val/tot_supply
  return T, min_val, emd

# Various utilities for global optimisation of *cheap* functions =========================
# Random samplning 
開發者ID:kirthevasank,項目名稱:nasbot,代碼行數:23,代碼來源:oper_utils.py

示例4: test_emd_dimension_mismatch

# 需要導入模塊: import ot [as 別名]
# 或者: from ot import emd [as 別名]
def test_emd_dimension_mismatch():
    # test emd and emd2 for dimension mismatch
    n_samples = 100
    n_features = 2
    rng = np.random.RandomState(0)

    x = rng.randn(n_samples, n_features)
    a = ot.utils.unif(n_samples + 1)

    M = ot.dist(x, x)

    np.testing.assert_raises(AssertionError, ot.emd, a, a, M)

    np.testing.assert_raises(AssertionError, ot.emd2, a, a, M) 
開發者ID:PythonOT,項目名稱:POT,代碼行數:16,代碼來源:test_ot.py

示例5: test_emd_1d_emd2_1d

# 需要導入模塊: import ot [as 別名]
# 或者: from ot import emd [as 別名]
def test_emd_1d_emd2_1d():
    # test emd1d gives similar results as emd
    n = 20
    m = 30
    rng = np.random.RandomState(0)
    u = rng.randn(n, 1)
    v = rng.randn(m, 1)

    M = ot.dist(u, v, metric='sqeuclidean')

    G, log = ot.emd([], [], M, log=True)
    wass = log["cost"]
    G_1d, log = ot.emd_1d(u, v, [], [], metric='sqeuclidean', log=True)
    wass1d = log["cost"]
    wass1d_emd2 = ot.emd2_1d(u, v, [], [], metric='sqeuclidean', log=False)
    wass1d_euc = ot.emd2_1d(u, v, [], [], metric='euclidean', log=False)

    # check loss is similar
    np.testing.assert_allclose(wass, wass1d)
    np.testing.assert_allclose(wass, wass1d_emd2)

    # check loss is similar to scipy's implementation for Euclidean metric
    wass_sp = wasserstein_distance(u.reshape((-1,)), v.reshape((-1,)))
    np.testing.assert_allclose(wass_sp, wass1d_euc)

    # check constraints
    np.testing.assert_allclose(np.ones((n,)) / n, G.sum(1))
    np.testing.assert_allclose(np.ones((m,)) / m, G.sum(0))

    # check G is similar
    np.testing.assert_allclose(G, G_1d)

    # check AssertionError is raised if called on non 1d arrays
    u = np.random.randn(n, 2)
    v = np.random.randn(m, 2)
    with pytest.raises(AssertionError):
        ot.emd_1d(u, v, [], []) 
開發者ID:PythonOT,項目名稱:POT,代碼行數:39,代碼來源:test_ot.py

示例6: test_emd_1d_emd2_1d_with_weights

# 需要導入模塊: import ot [as 別名]
# 或者: from ot import emd [as 別名]
def test_emd_1d_emd2_1d_with_weights():
    # test emd1d gives similar results as emd
    n = 20
    m = 30
    rng = np.random.RandomState(0)
    u = rng.randn(n, 1)
    v = rng.randn(m, 1)

    w_u = rng.uniform(0., 1., n)
    w_u = w_u / w_u.sum()

    w_v = rng.uniform(0., 1., m)
    w_v = w_v / w_v.sum()

    M = ot.dist(u, v, metric='sqeuclidean')

    G, log = ot.emd(w_u, w_v, M, log=True)
    wass = log["cost"]
    G_1d, log = ot.emd_1d(u, v, w_u, w_v, metric='sqeuclidean', log=True)
    wass1d = log["cost"]
    wass1d_emd2 = ot.emd2_1d(u, v, w_u, w_v, metric='sqeuclidean', log=False)
    wass1d_euc = ot.emd2_1d(u, v, w_u, w_v, metric='euclidean', log=False)

    # check loss is similar
    np.testing.assert_allclose(wass, wass1d)
    np.testing.assert_allclose(wass, wass1d_emd2)

    # check loss is similar to scipy's implementation for Euclidean metric
    wass_sp = wasserstein_distance(u.reshape((-1,)), v.reshape((-1,)), w_u, w_v)
    np.testing.assert_allclose(wass_sp, wass1d_euc)

    # check constraints
    np.testing.assert_allclose(w_u, G.sum(1))
    np.testing.assert_allclose(w_v, G.sum(0)) 
開發者ID:PythonOT,項目名稱:POT,代碼行數:36,代碼來源:test_ot.py

示例7: test_warnings

# 需要導入模塊: import ot [as 別名]
# 或者: from ot import emd [as 別名]
def test_warnings():
    n = 100  # nb bins
    m = 100  # nb bins

    mean1 = 30
    mean2 = 50

    # bin positions
    x = np.arange(n, dtype=np.float64)
    y = np.arange(m, dtype=np.float64)

    # Gaussian distributions
    a = gauss(n, m=mean1, s=5)  # m= mean, s= std

    b = gauss(m, m=mean2, s=10)

    # loss matrix
    M = ot.dist(x.reshape((-1, 1)), y.reshape((-1, 1))) ** (1. / 2)

    print('Computing {} EMD '.format(1))
    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter("always")
        print('Computing {} EMD '.format(1))
        ot.emd(a, b, M, numItermax=1)
        assert "numItermax" in str(w[-1].message)
        assert len(w) == 1
        a[0] = 100
        print('Computing {} EMD '.format(2))
        ot.emd(a, b, M)
        assert "infeasible" in str(w[-1].message)
        assert len(w) == 2
        a[0] = -1
        print('Computing {} EMD '.format(2))
        ot.emd(a, b, M)
        assert "infeasible" in str(w[-1].message)
        assert len(w) == 3 
開發者ID:PythonOT,項目名稱:POT,代碼行數:38,代碼來源:test_ot.py

示例8: EMD_at_k

# 需要導入模塊: import ot [as 別名]
# 或者: from ot import emd [as 別名]
def EMD_at_k(k, ideal_desc_labels, sys_corresponding_scores, group_div_cost=np.e, margin_to_non_rele=100.0, rele_gain_base=4.0):
    if k>len(ideal_desc_labels):
        return 0.0

    cost_mat = eval_cost_mat_group(ideal_desc_labels, group_div_cost=group_div_cost, margin_to_non_rele=margin_to_non_rele, rele_gain_base=rele_gain_base)

    ideal_histogram = np_stable_softmax_e(ideal_desc_labels)
    sys_historgram = np_stable_softmax_e(sys_corresponding_scores)

    # %% EMD
    G0 = ot.emd(a=sys_historgram, b=ideal_histogram, M=cost_mat)
    emd_value = np.sum(G0 * cost_mat)

    return emd_value 
開發者ID:pt-ranking,項目名稱:pt-ranking.github.io,代碼行數:16,代碼來源:metric.py

示例9: EMD_at_k

# 需要導入模塊: import ot [as 別名]
# 或者: from ot import emd [as 別名]
def EMD_at_k(k, ideal_desc_labels, sys_corresponding_scores, group_div_cost=np.e, margin_to_non_rele=100.0, rele_gain_base=4.0):
	if k>len(ideal_desc_labels):
		return 0.0

	cost_mat = eval_cost_mat_group(ideal_desc_labels, group_div_cost=group_div_cost, margin_to_non_rele=margin_to_non_rele, rele_gain_base=rele_gain_base)

	ideal_histogram = np_stable_softmax_e(ideal_desc_labels)
	sys_historgram = np_stable_softmax_e(sys_corresponding_scores)

	# %% EMD
	G0 = ot.emd(a=sys_historgram, b=ideal_histogram, M=cost_mat)
	emd_value = np.sum(G0 * cost_mat)

	return emd_value 
開發者ID:pt-ranking,項目名稱:pt-ranking.github.io,代碼行數:16,代碼來源:adhoc_metric.py

示例10: test_emd2_multi

# 需要導入模塊: import ot [as 別名]
# 或者: from ot import emd [as 別名]
def test_emd2_multi():
    n = 500  # nb bins

    # bin positions
    x = np.arange(n, dtype=np.float64)

    # Gaussian distributions
    a = gauss(n, m=20, s=5)  # m= mean, s= std

    ls = np.arange(20, 500, 20)
    nb = len(ls)
    b = np.zeros((n, nb))
    for i in range(nb):
        b[:, i] = gauss(n, m=ls[i], s=10)

    # loss matrix
    M = ot.dist(x.reshape((n, 1)), x.reshape((n, 1)))
    # M/=M.max()

    print('Computing {} EMD '.format(nb))

    # emd loss 1 proc
    ot.tic()
    emd1 = ot.emd2(a, b, M, 1)
    ot.toc('1 proc : {} s')

    # emd loss multipro proc
    ot.tic()
    emdn = ot.emd2(a, b, M)
    ot.toc('multi proc : {} s')

    np.testing.assert_allclose(emd1, emdn)

    # emd loss multipro proc with log
    ot.tic()
    emdn = ot.emd2(a, b, M, log=True, return_matrix=True)
    ot.toc('multi proc : {} s')

    for i in range(len(emdn)):
        emd = emdn[i]
        log = emd[1]
        cost = emd[0]
        check_duality_gap(a, b[:, i], M, log['G'], log['u'], log['v'], cost)
        emdn[i] = cost

    emdn = np.array(emdn)
    np.testing.assert_allclose(emd1, emdn) 
開發者ID:PythonOT,項目名稱:POT,代碼行數:49,代碼來源:test_ot.py

示例11: test_dual_variables

# 需要導入模塊: import ot [as 別名]
# 或者: from ot import emd [as 別名]
def test_dual_variables():
    n = 500  # nb bins
    m = 600  # nb bins

    mean1 = 300
    mean2 = 400

    # bin positions
    x = np.arange(n, dtype=np.float64)
    y = np.arange(m, dtype=np.float64)

    # Gaussian distributions
    a = gauss(n, m=mean1, s=5)  # m= mean, s= std

    b = gauss(m, m=mean2, s=10)

    # loss matrix
    M = ot.dist(x.reshape((-1, 1)), y.reshape((-1, 1))) ** (1. / 2)

    print('Computing {} EMD '.format(1))

    # emd loss 1 proc
    ot.tic()
    G, log = ot.emd(a, b, M, log=True)
    ot.toc('1 proc : {} s')

    ot.tic()
    G2 = ot.emd(b, a, np.ascontiguousarray(M.T))
    ot.toc('1 proc : {} s')

    cost1 = (G * M).sum()
    # Check symmetry
    np.testing.assert_array_almost_equal(cost1, (M * G2.T).sum())
    # Check with closed-form solution for gaussians
    np.testing.assert_almost_equal(cost1, np.abs(mean1 - mean2))

    # Check that both cost computations are equivalent
    np.testing.assert_almost_equal(cost1, log['cost'])
    check_duality_gap(a, b, M, G, log['u'], log['v'], log['cost'])

    constraint_violation = log['u'][:, None] + log['v'][None, :] - M

    assert constraint_violation.max() < 1e-8 
開發者ID:PythonOT,項目名稱:POT,代碼行數:45,代碼來源:test_ot.py

示例12: jdot_krr

# 需要導入模塊: import ot [as 別名]
# 或者: from ot import emd [as 別名]
def jdot_krr(X,y,Xtest,gamma_g=1, numIterBCD = 10, alpha=1,lambd=1e1, 
             method='emd',reg=1,ktype='linear'):
    # Initializations
    n = X.shape[0]
    ntest = Xtest.shape[0]
    wa=np.ones((n,))/n
    wb=np.ones((ntest,))/ntest

    # original loss
    C0=cdist(X,Xtest,metric='sqeuclidean')
    #print np.max(C0)
    C0=C0/np.median(C0)

    # classifier    
    g = classif.KRRClassifier(lambd)

    # compute kernels
    if ktype=='rbf':
        Kt=sklearn.metrics.pairwise.rbf_kernel(Xtest,Xtest,gamma=gamma_g)
    else:
        Kt=sklearn.metrics.pairwise.linear_kernel(Xtest,Xtest)

    C = alpha*C0#+ cdist(y,ypred,metric='sqeuclidean')
    k=0
    while (k<numIterBCD):# and not changeLabels:
        k=k+1
        if method=='sinkhorn':
            G = ot.sinkhorn(wa,wb,C,reg)
        if method=='emd':
            G=  ot.emd(wa,wb,C)

        Yst=ntest*G.T.dot(y)

        g.fit(Kt,Yst)
        ypred=g.predict(Kt)
       
        # function cost
        fcost = cdist(y,ypred,metric='sqeuclidean')

        C=alpha*C0+fcost
            
    return g,np.sum(G*(fcost)) 
開發者ID:rflamary,項目名稱:JDOT,代碼行數:44,代碼來源:jdot.py


注:本文中的ot.emd方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。