當前位置: 首頁>>代碼示例>>Python>>正文


Python gdal.RegenerateOverview方法代碼示例

本文整理匯總了Python中osgeo.gdal.RegenerateOverview方法的典型用法代碼示例。如果您正苦於以下問題:Python gdal.RegenerateOverview方法的具體用法?Python gdal.RegenerateOverview怎麽用?Python gdal.RegenerateOverview使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在osgeo.gdal的用法示例。


在下文中一共展示了gdal.RegenerateOverview方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: scale_query_to_tile

# 需要導入模塊: from osgeo import gdal [as 別名]
# 或者: from osgeo.gdal import RegenerateOverview [as 別名]
def scale_query_to_tile(self, dsquery, dstile):
        """Scales down query dataset to the tile dataset"""

        querysize = dsquery.RasterXSize
        tilesize = dstile.RasterXSize
        tilebands = dstile.RasterCount

        if self.options.resampling == 'average':
            for i in range(1,tilebands+1):
                res = gdal.RegenerateOverview( dsquery.GetRasterBand(i),
                    dstile.GetRasterBand(i), 'average' )
                if res != 0:
                    self.error("RegenerateOverview() failed")
        else:
            # Other algorithms are implemented by gdal.ReprojectImage().
            dsquery.SetGeoTransform( (0.0, tilesize / float(querysize), 0.0, 0.0, 0.0, tilesize / float(querysize)) )
            dstile.SetGeoTransform( (0.0, 1.0, 0.0, 0.0, 0.0, 1.0) )
            
            res = gdal.ReprojectImage(dsquery, dstile, None, None, self.resampling)    
            if res != 0:
                self.error("ReprojectImage() failed on %s, error %d" % (tilefilename, res)) 
開發者ID:giohappy,項目名稱:gdal2cesium,代碼行數:23,代碼來源:gdal2cesium.py

示例2: scale_query_to_tile

# 需要導入模塊: from osgeo import gdal [as 別名]
# 或者: from osgeo.gdal import RegenerateOverview [as 別名]
def scale_query_to_tile(dsquery, dstile, tiledriver, options, tilefilename=''):
    """Scales down query dataset to the tile dataset"""

    querysize = dsquery.RasterXSize
    tilesize = dstile.RasterXSize
    tilebands = dstile.RasterCount

    if options.resampling == 'average':

        # Function: gdal.RegenerateOverview()
        for i in range(1, tilebands+1):
            # Black border around NODATA
            res = gdal.RegenerateOverview(dsquery.GetRasterBand(i), dstile.GetRasterBand(i),
                                          'average')
            if res != 0:
                exit_with_error("RegenerateOverview() failed on %s, error %d" % (
                    tilefilename, res))

    elif options.resampling == 'antialias':

        # Scaling by PIL (Python Imaging Library) - improved Lanczos
        array = numpy.zeros((querysize, querysize, tilebands), numpy.uint8)
        for i in range(tilebands):
            array[:, :, i] = gdalarray.BandReadAsArray(dsquery.GetRasterBand(i+1),
                                                       0, 0, querysize, querysize)
        im = Image.fromarray(array, 'RGBA')     # Always four bands
        im1 = im.resize((tilesize, tilesize), Image.ANTIALIAS)
        if os.path.exists(tilefilename):
            im0 = Image.open(tilefilename)
            im1 = Image.composite(im1, im0, im1)
        im1.save(tilefilename, tiledriver)

    else:

        if options.resampling == 'near':
            gdal_resampling = gdal.GRA_NearestNeighbour

        elif options.resampling == 'bilinear':
            gdal_resampling = gdal.GRA_Bilinear

        elif options.resampling == 'cubic':
            gdal_resampling = gdal.GRA_Cubic

        elif options.resampling == 'cubicspline':
            gdal_resampling = gdal.GRA_CubicSpline

        elif options.resampling == 'lanczos':
            gdal_resampling = gdal.GRA_Lanczos

        # Other algorithms are implemented by gdal.ReprojectImage().
        dsquery.SetGeoTransform((0.0, tilesize / float(querysize), 0.0, 0.0, 0.0,
                                 tilesize / float(querysize)))
        dstile.SetGeoTransform((0.0, 1.0, 0.0, 0.0, 0.0, 1.0))

        res = gdal.ReprojectImage(dsquery, dstile, None, None, gdal_resampling)
        if res != 0:
            exit_with_error("ReprojectImage() failed on %s, error %d" % (tilefilename, res)) 
開發者ID:Luqqk,項目名稱:gdal2tiles,代碼行數:59,代碼來源:gdal2tiles.py

示例3: options_post_processing

# 需要導入模塊: from osgeo import gdal [as 別名]
# 或者: from osgeo.gdal import RegenerateOverview [as 別名]
def options_post_processing(options, input_file, output_folder):
    if not options.title:
        options.title = os.path.basename(input_file)

    if options.url and not options.url.endswith('/'):
        options.url += '/'
    if options.url:
        out_path = output_folder
        if out_path.endswith("/"):
            out_path = out_path[:-1]
        options.url += os.path.basename(out_path) + '/'

    # Supported options
    if options.resampling == 'average':
        try:
            if gdal.RegenerateOverview:
                pass
        except Exception:
            exit_with_error("'average' resampling algorithm is not available.",
                            "Please use -r 'near' argument or upgrade to newer version of GDAL.")

    elif options.resampling == 'antialias':
        try:
            if numpy:     # pylint:disable=W0125
                pass
        except Exception:
            exit_with_error("'antialias' resampling algorithm is not available.",
                            "Install PIL (Python Imaging Library) and numpy.")

    try:
        os.path.basename(input_file).encode('ascii')
    except UnicodeEncodeError:
        full_ascii = False
    else:
        full_ascii = True

    # LC_CTYPE check
    if not full_ascii and 'UTF-8' not in os.environ.get("LC_CTYPE", ""):
        if not options.quiet:
            print("\nWARNING: "
                  "You are running gdal2tiles.py with a LC_CTYPE environment variable that is "
                  "not UTF-8 compatible, and your input file contains non-ascii characters. "
                  "The generated sample googlemaps, openlayers or "
                  "leaflet files might contain some invalid characters as a result\n")

    # Output the results
    if options.verbose:
        print("Options:", options)
        print("Input:", input_file)
        print("Output:", output_folder)
        print("Cache: %s MB" % (gdal.GetCacheMax() / 1024 / 1024))
        print('')

    return options 
開發者ID:Luqqk,項目名稱:gdal2tiles,代碼行數:56,代碼來源:gdal2tiles.py

示例4: scale_query_to_tile

# 需要導入模塊: from osgeo import gdal [as 別名]
# 或者: from osgeo.gdal import RegenerateOverview [as 別名]
def scale_query_to_tile(dsquery, dstile, tiledriver, options, tilefilename=''):
    """Scales down query dataset to the tile dataset"""

    querysize = dsquery.RasterXSize
    tilesize = dstile.RasterXSize
    tilebands = dstile.RasterCount

    if options.resampling == 'average':

        # Function: gdal.RegenerateOverview()
        for i in range(1, tilebands + 1):
            # Black border around NODATA
            res = gdal.RegenerateOverview(dsquery.GetRasterBand(i), dstile.GetRasterBand(i),
                                          'average')
            if res != 0:
                exit_with_error("RegenerateOverview() failed on %s, error %d" % (
                    tilefilename, res))

    elif options.resampling == 'antialias':

        # Scaling by PIL (Python Imaging Library) - improved Lanczos
        array = numpy.zeros((querysize, querysize, tilebands), numpy.uint8)
        for i in range(tilebands):
            array[:, :, i] = gdalarray.BandReadAsArray(dsquery.GetRasterBand(i + 1),
                                                       0, 0, querysize, querysize)
        im = Image.fromarray(array, 'RGBA')     # Always four bands
        im1 = im.resize((tilesize, tilesize), Image.ANTIALIAS)
        if os.path.exists(tilefilename):
            im0 = Image.open(tilefilename)
            im1 = Image.composite(im1, im0, im1)
        im1.save(tilefilename, tiledriver)

    else:

        if options.resampling == 'near':
            gdal_resampling = gdal.GRA_NearestNeighbour

        elif options.resampling == 'bilinear':
            gdal_resampling = gdal.GRA_Bilinear

        elif options.resampling == 'cubic':
            gdal_resampling = gdal.GRA_Cubic

        elif options.resampling == 'cubicspline':
            gdal_resampling = gdal.GRA_CubicSpline

        elif options.resampling == 'lanczos':
            gdal_resampling = gdal.GRA_Lanczos

        # Other algorithms are implemented by gdal.ReprojectImage().
        dsquery.SetGeoTransform((0.0, tilesize / float(querysize), 0.0, 0.0, 0.0,
                                 tilesize / float(querysize)))
        dstile.SetGeoTransform((0.0, 1.0, 0.0, 0.0, 0.0, 1.0))

        res = gdal.ReprojectImage(dsquery, dstile, None, None, gdal_resampling)
        if res != 0:
            exit_with_error("ReprojectImage() failed on %s, error %d" % (tilefilename, res)) 
開發者ID:tehamalab,項目名稱:gdal2tiles,代碼行數:59,代碼來源:gdal2tiles.py

示例5: options_post_processing

# 需要導入模塊: from osgeo import gdal [as 別名]
# 或者: from osgeo.gdal import RegenerateOverview [as 別名]
def options_post_processing(options, input_file, output_folder):
    if not options.title:
        options.title = os.path.basename(input_file)

    if options.url and not options.url.endswith('/'):
        options.url += '/'
    if options.url:
        out_path = output_folder
        if out_path.endswith("/"):
            out_path = out_path[:-1]
        options.url += os.path.basename(out_path) + '/'

    if isinstance(options.zoom, (list, tuple)) and len(options.zoom) < 2:
        raise ValueError('Invalid zoom value')

    # Supported options
    if options.resampling == 'average':
        try:
            if gdal.RegenerateOverview:
                pass
        except Exception:
            exit_with_error("'average' resampling algorithm is not available.",
                            "Please use -r 'near' argument or upgrade to newer version of GDAL.")

    elif options.resampling == 'antialias':
        try:
            if numpy:     # pylint:disable=W0125
                pass
        except Exception:
            exit_with_error("'antialias' resampling algorithm is not available.",
                            "Install PIL (Python Imaging Library) and numpy.")

    try:
        os.path.basename(input_file).encode('ascii')
    except UnicodeEncodeError:
        full_ascii = False
    else:
        full_ascii = True

    # LC_CTYPE check
    if not full_ascii and 'UTF-8' not in os.environ.get("LC_CTYPE", ""):
        if not options.quiet:
            print("\nWARNING: "
                  "You are running gdal2tiles.py with a LC_CTYPE environment variable that is "
                  "not UTF-8 compatible, and your input file contains non-ascii characters. "
                  "The generated sample googlemaps, openlayers or "
                  "leaflet files might contain some invalid characters as a result\n")

    # Output the results
    if options.verbose:
        print("Options:", options)
        print("Input:", input_file)
        print("Output:", output_folder)
        print("Cache: %s MB" % (gdal.GetCacheMax() / 1024 / 1024))
        print('')

    return options 
開發者ID:tehamalab,項目名稱:gdal2tiles,代碼行數:59,代碼來源:gdal2tiles.py

示例6: scale_query_to_tile

# 需要導入模塊: from osgeo import gdal [as 別名]
# 或者: from osgeo.gdal import RegenerateOverview [as 別名]
def scale_query_to_tile(self, dsquery, dstile, tilefilename=''):
        """Scales down query dataset to the tile dataset"""

        querysize = dsquery.RasterXSize
        tilesize = dstile.RasterXSize
        tilebands = dstile.RasterCount

        if self.options.resampling == 'average':

            # Function: gdal.RegenerateOverview()
            for i in range(1, tilebands + 1):
                # Black border around NODATA
                #if i != 4:
                #   dsquery.GetRasterBand(i).SetNoDataValue(0)
                res = gdal.RegenerateOverview(
                    dsquery.GetRasterBand(i), dstile.GetRasterBand(i),
                    'average')
                if res != 0:
                    self.error("RegenerateOverview() failed on %s, error %d" %
                               (tilefilename, res))

        elif self.options.resampling == 'antialias':

            # Scaling by PIL (Python Imaging Library) - improved Lanczos
            array = numpy.zeros((querysize, querysize, tilebands), numpy.uint8)
            for i in range(tilebands):
                array[:, :, i] = gdalarray.BandReadAsArray(
                    dsquery.GetRasterBand(i + 1), 0, 0, querysize, querysize)
            im = Image.fromarray(array, 'RGBA')  # Always four bands
            im1 = im.resize((tilesize, tilesize), Image.ANTIALIAS)
            if path.exists(tilefilename):
                im0 = Image.open(tilefilename)
                im1 = Image.composite(im1, im0, im1)
            im1.save(tilefilename, self.tiledriver)

        else:

            # Other algorithms are implemented by gdal.ReprojectImage().
            dsquery.SetGeoTransform((0.0, tilesize / float(querysize), 0.0,
                                     0.0, 0.0, tilesize / float(querysize)))
            dstile.SetGeoTransform((0.0, 1.0, 0.0, 0.0, 0.0, 1.0))
            
            
            res = gdal.ReprojectImage(dsquery, dstile, None, None,
                                      self.resampling)
            if res != 0:
                self.error("ReprojectImage() failed on %s, error %d" %
                           (tilefilename, res))

    # ------------------------------------------------------------------------- 
開發者ID:GitHubRGI,項目名稱:geopackage-python,代碼行數:52,代碼來源:gdal2tiles_parallel.py


注:本文中的osgeo.gdal.RegenerateOverview方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。