當前位置: 首頁>>代碼示例>>Python>>正文


Python gdal.Dataset方法代碼示例

本文整理匯總了Python中osgeo.gdal.Dataset方法的典型用法代碼示例。如果您正苦於以下問題:Python gdal.Dataset方法的具體用法?Python gdal.Dataset怎麽用?Python gdal.Dataset使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在osgeo.gdal的用法示例。


在下文中一共展示了gdal.Dataset方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: spectra_at_xy

# 需要導入模塊: from osgeo import gdal [as 別名]
# 或者: from osgeo.gdal import Dataset [as 別名]
def spectra_at_xy(rast, xy, gt=None, wkt=None, dd=False):
    '''
    Returns the spectral profile of the pixels indicated by the longitude-
    latitude pairs provided. Arguments:
        rast    A gdal.Dataset or NumPy array
        xy      An array of X-Y (e.g., longitude-latitude) pairs
        gt      A GDAL GeoTransform tuple; ignored for gdal.Dataset
        wkt     Well-Known Text projection information; ignored for
                gdal.Dataset
        dd      Interpret the longitude-latitude pairs as decimal degrees
    Returns a (q x p) array of q endmembers with p bands.
    '''
    # Can accept either a gdal.Dataset or numpy.array instance
    if not isinstance(rast, np.ndarray):
        gt = rast.GetGeoTransform()
        wkt = rast.GetProjection()
        rast = rast.ReadAsArray()

    # You would think that transposing the matrix can't be as fast as
    #   transposing the coordinate pairs, however, it is.
    return spectra_at_idx(rast.transpose(), xy_to_pixel(xy,
        gt=gt, wkt=wkt, dd=dd)) 
開發者ID:arthur-e,項目名稱:unmixing,代碼行數:24,代碼來源:utils.py

示例2: ogr_copy_layer

# 需要導入模塊: from osgeo import gdal [as 別名]
# 或者: from osgeo.gdal import Dataset [as 別名]
def ogr_copy_layer(src_ds, index, dst_ds, reset=True):
    """ Copy OGR.Layer object.

    Copy OGR.Layer object from src_ds gdal.Dataset to dst_ds gdal.Dataset

    Parameters
    ----------
    src_ds : gdal.Dataset
        object
    index : int
        layer index
    dst_ds : gdal.Dataset
        object
    reset : bool
        if True resets src_layer
    """
    # get and copy src geometry layer

    src_lyr = src_ds.GetLayerByIndex(index)
    if reset:
        src_lyr.ResetReading()
        src_lyr.SetSpatialFilter(None)
        src_lyr.SetAttributeFilter(None)
    dst_ds.CopyLayer(src_lyr, src_lyr.GetName()) 
開發者ID:wradlib,項目名稱:wradlib,代碼行數:26,代碼來源:vector.py

示例3: raster_to_polyvert

# 需要導入模塊: from osgeo import gdal [as 別名]
# 或者: from osgeo.gdal import Dataset [as 別名]
def raster_to_polyvert(dataset):
    """Get raster polygonal vertices from gdal dataset.

    Parameters
    ----------
    dataset : gdal.Dataset
        raster image with georeferencing (GeoTransform at least)

    Returns
    -------
    polyvert : :class:`numpy:numpy.ndarray`
        A N-d array of polygon vertices with shape (..., 5, 2).

    """
    rastercoords = read_gdal_coordinates(dataset, mode="edge")

    polyvert = georef.grid_to_polyvert(rastercoords)

    return polyvert 
開發者ID:wradlib,項目名稱:wradlib,代碼行數:21,代碼來源:raster.py

示例4: open_raster

# 需要導入模塊: from osgeo import gdal [as 別名]
# 或者: from osgeo.gdal import Dataset [as 別名]
def open_raster(filename, driver=None):
    """Open raster file, return gdal.Dataset

    Parameters
    ----------
    filename : string
        raster file name
    driver : string
        gdal driver string

    Returns
    -------
    dataset : gdal.Dataset
        dataset
    """

    dataset = gdal.OpenEx(filename)

    if driver:
        gdal.GetDriverByName(driver)

    return dataset 
開發者ID:wradlib,項目名稱:wradlib,代碼行數:24,代碼來源:gdal.py

示例5: get_geo_transform

# 需要導入模塊: from osgeo import gdal [as 別名]
# 或者: from osgeo.gdal import Dataset [as 別名]
def get_geo_transform(raster_src):
    """Get the geotransform for a raster image source.

    Arguments
    ---------
    raster_src : str, :class:`rasterio.DatasetReader`, or `osgeo.gdal.Dataset`
        Path to a raster image with georeferencing data to apply to `geom`.
        Alternatively, an opened :class:`rasterio.Band` object or
        :class:`osgeo.gdal.Dataset` object can be provided. Required if not
        using `affine_obj`.

    Returns
    -------
    transform : :class:`affine.Affine`
        An affine transformation object to the image's location in its CRS.
    """

    if isinstance(raster_src, str):
        affine_obj = rasterio.open(raster_src).transform
    elif isinstance(raster_src, rasterio.DatasetReader):
        affine_obj = raster_src.transform
    elif isinstance(raster_src, gdal.Dataset):
        affine_obj = Affine.from_gdal(*raster_src.GetGeoTransform())

    return affine_obj 
開發者ID:CosmiQ,項目名稱:solaris,代碼行數:27,代碼來源:image.py

示例6: as_raster

# 需要導入模塊: from osgeo import gdal [as 別名]
# 或者: from osgeo.gdal import Dataset [as 別名]
def as_raster(path):
    '''
    A convenience function for opening a raster and accessing its spatial
    information; takes a single string argument. Arguments:
        path    The path of the raster file to open as a gdal.Dataset
    '''
    ds = gdal.Open(path)
    gt = ds.GetGeoTransform()
    wkt = ds.GetProjection()
    return (ds, gt, wkt) 
開發者ID:arthur-e,項目名稱:unmixing,代碼行數:12,代碼來源:utils.py

示例7: cfmask

# 需要導入模塊: from osgeo import gdal [as 別名]
# 或者: from osgeo.gdal import Dataset [as 別名]
def cfmask(mask, mask_values=(1,2,3,4,255), nodata=-9999):
    '''
    Returns a binary mask according to the CFMask algorithm results for the
    image; mask has True for water, cloud, shadow, and snow (if any) and False
    everywhere else. More information can be found:
        https://landsat.usgs.gov/landsat-surface-reflectance-quality-assessment

    Landsat 4-7 Pre-Collection pixel_qa values to be masked:
        mask_values = (1, 2, 3, 4)

    Landsat 4-7 Collection 1 pixel_qa values to be masked (for "Medium" confidence):
        mask_values = (1, 68, 72, 80, 112, 132, 136, 144, 160, 176, 224)

    Landsat 8 Collection 1 pixel_qa values to be masked (for "Medium" confidence):
        mask_values = (1, 324, 328, 386, 388, 392, 400, 416, 432, 480, 832, 836, 840, 848, 864, 880, 900, 904, 912, 928, 944, 992, 1024)

    Arguments:
        mask        A gdal.Dataset or a NumPy array
        mask_path   The path to an EOS HDF4 CFMask raster
        mask_values The values in the mask that correspond to NoData pixels
        nodata      The NoData value; defaults to -9999.
    '''
    if not isinstance(mask, np.ndarray):
        maskr = mask.ReadAsArray()

    else:
        maskr = mask.copy()

    # Mask according to bit-packing described here:
    # https://landsat.usgs.gov/landsat-surface-reflectance-quality-assessment
    maskr = np.in1d(maskr.reshape((maskr.shape[0] * maskr.shape[1])), mask_values)\
        .reshape((1, maskr.shape[0], maskr.shape[1])).astype(np.int0)

    return maskr 
開發者ID:arthur-e,項目名稱:unmixing,代碼行數:36,代碼來源:utils.py

示例8: clean_mask

# 需要導入模塊: from osgeo import gdal [as 別名]
# 或者: from osgeo.gdal import Dataset [as 別名]
def clean_mask(rast):
    '''
    Clips the values in a mask to the interval [0, 1]; values larger than 1
    become 1 and values smaller than 0 become 0.
    Arguments:
        rast    An input gdal.Dataset or numpy.array instance
    '''
    # Can accept either a gdal.Dataset or numpy.array instance
    if not isinstance(rast, np.ndarray):
        rastr = rast.ReadAsArray()

    else:
        rastr = rast.copy()

    return np.clip(rastr, a_min=0, a_max=1) 
開發者ID:arthur-e,項目名稱:unmixing,代碼行數:17,代碼來源:utils.py

示例9: copy_nodata

# 需要導入模塊: from osgeo import gdal [as 別名]
# 或者: from osgeo.gdal import Dataset [as 別名]
def copy_nodata(source, target, nodata=-9999):
    '''
    Copies the NoData values from a source raster or raster array into a
    target raster or raster array. That is, source's NoData values are
    embedded in target. This is useful, for instance, when you want to mask
    out dropped scanlines in a Landsat 7 image; these areas are NoData in the
    EOS HDF but they are not included in the QA mask. Arguments:
        source  A gdal.Dataset or a NumPy array
        target  A gdal.Dataset or a NumPy array
        nodata  The NoData value to look for (and embed)
    '''
    # Can accept either a gdal.Dataset or numpy.array instance
    if not isinstance(source, np.ndarray):
        source = source.ReadAsArray()

    if not isinstance(target, np.ndarray):
        target = target.ReadAsArray()

    else:
        target = target.copy()

    assert source.ndim == target.ndim, "Source and target rasters must have the same number of axes"

    if source.ndim == 3:
        assert source.shape[1:] == target.shape[1:], "Source and target rasters must have the same shape (not including band axis)"
        return np.where(source[0,...] == nodata, nodata, target)

    else:
        assert source.shape == target.shape, "Source and target rasters must have the same shape"
        return np.where(source == nodata, nodata, target) 
開發者ID:arthur-e,項目名稱:unmixing,代碼行數:32,代碼來源:utils.py

示例10: dump_raster

# 需要導入模塊: from osgeo import gdal [as 別名]
# 或者: from osgeo.gdal import Dataset [as 別名]
def dump_raster(rast, rast_path, driver='GTiff', gdt=None, nodata=None):
    '''
    Creates a raster file from a given gdal.Dataset instance. Arguments:
        rast        A gdal.Dataset; does NOT accept NumPy array
        rast_path   The path of the output raster file
        driver      The name of the GDAL driver to use (determines file type)
        gdt         The GDAL data type to use, e.g., see gdal.GDT_Float32
        nodata      The NoData value; defaults to -9999.
    '''
    if gdt is None:
        gdt = rast.GetRasterBand(1).DataType
    driver = gdal.GetDriverByName(driver)
    sink = driver.Create(
        rast_path, rast.RasterXSize, rast.RasterYSize, rast.RasterCount, int(gdt))
    assert sink is not None, 'Cannot create dataset; there may be a problem with the output path you specified'
    sink.SetGeoTransform(rast.GetGeoTransform())
    sink.SetProjection(rast.GetProjection())

    for b in range(1, rast.RasterCount + 1):
        dat = rast.GetRasterBand(b).ReadAsArray()
        sink.GetRasterBand(b).WriteArray(dat)
        sink.GetRasterBand(b).SetStatistics(*map(np.float64,
            [dat.min(), dat.max(), dat.mean(), dat.std()]))

        if nodata is None:
            nodata = rast.GetRasterBand(b).GetNoDataValue()

            if nodata is None:
                nodata = -9999

        sink.GetRasterBand(b).SetNoDataValue(np.float64(nodata))

    sink.FlushCache() 
開發者ID:arthur-e,項目名稱:unmixing,代碼行數:35,代碼來源:utils.py

示例11: mask_by_query

# 需要導入模塊: from osgeo import gdal [as 別名]
# 或者: from osgeo.gdal import Dataset [as 別名]
def mask_by_query(rast, query, invert=False, nodata=-9999):
    '''
    Mask pixels (across bands) that match a query in any one band or all
    bands. For example: `query = rast[1,...] < -25` queries those pixels
    with a value less than -25 in band 2; these pixels would be masked
    (if `invert=False`). By default, the pixels that are queried are
    masked, but if `invert=True`, the query serves to select pixels NOT
    to be masked (`np.invert()` can also be called on the query before
    calling this function to achieve the same effect). Arguments:
        rast    A gdal.Dataset or numpy.array instance
        query   A NumPy boolean array representing the result of a query
        invert  True to invert the query
        nodata  The NoData value to apply in the masking
    '''
    # Can accept either a gdal.Dataset or numpy.array instance
    if not isinstance(rast, np.ndarray):
        rastr = rast.ReadAsArray()

    else:
        rastr = rast.copy()

    shp = rastr.shape
    if query.shape != rastr.shape:
        assert len(query.shape) == 2 or len(query.shape) == len(shp), 'Query must either be 2-dimensional (single-band) or have a dimensionality equal to the raster array'
        assert shp[-2] == query.shape[-2] and shp[-1] == query.shape[-1], 'Raster and query must be conformable arrays in two dimensions (must have the same extent)'

        # Transform query into a 1-band array and then into a multi-band array
        query = query.reshape((1, shp[-2], shp[-1])).repeat(shp[0], axis=0)

    # Mask out areas that match the query
    if invert:
        rastr[np.invert(query)] = nodata

    else:
        rastr[query] = nodata

    return rastr 
開發者ID:arthur-e,項目名稱:unmixing,代碼行數:39,代碼來源:utils.py

示例12: saturation_mask

# 需要導入模塊: from osgeo import gdal [as 別名]
# 或者: from osgeo.gdal import Dataset [as 別名]
def saturation_mask(rast, saturation_value=10000, nodata=-9999):
    '''
    Returns a binary mask that has True for saturated values (e.g., surface
    reflectance values greater than 16,000, however, SR values are only
    considered valid on the range [0, 10,000]) and False everywhere else.
    Arguments:
        rast                A gdal.Dataset or NumPy array
        saturation_value    The value beyond which pixels are considered
                            saturated
        nodata              The NoData value; defaults to -9999.
    '''
    # Can accept either a gdal.Dataset or numpy.array instance
    if not isinstance(rast, np.ndarray):
        rastr = rast.ReadAsArray()

    else:
        rastr = rast.copy()

    # Create a baseline "nothing is saturated in any band" raster
    mask = np.empty((1, rastr.shape[1], rastr.shape[2]))
    mask.fill(False)

    # Update the mask for saturation in any band
    for i in range(rastr.shape[0]):
        np.logical_or(mask, rastr[i,...] > saturation_value, out=mask)

    return mask 
開發者ID:arthur-e,項目名稱:unmixing,代碼行數:29,代碼來源:utils.py

示例13: subarray

# 需要導入模塊: from osgeo import gdal [as 別名]
# 或者: from osgeo.gdal import Dataset [as 別名]
def subarray(rast, filtered_value=-9999, indices=False):
    '''
    Given a (p x m x n) raster (or array), returns a (p x z) subarray where
    z is the number of cases (pixels) that do not contain the filtered value
    (in any band, in the case of a multi-band image). Arguments:
        rast            The input gdal.Dataset or a NumPy array
        filtered_value  The value to remove from the raster array
        indices         If True, return a tuple: (indices, subarray)
    '''
    # Can accept either a gdal.Dataset or numpy.array instance
    if not isinstance(rast, np.ndarray):
        rastr = rast.ReadAsArray()

    else:
        rastr = rast.copy()

    shp = rastr.shape
    if len(shp) == 1:
        # If already raveled
        return rastr[rastr != filtered_value]

    if len(shp) == 2 or shp[0] == 1:
        # If a "single-band" image
        arr = rastr.reshape(1, shp[-2]*shp[-1])
        return arr[arr != filtered_value]

    # For multi-band images
    arr = rastr.reshape(shp[0], shp[1]*shp[2])
    idx = (arr != filtered_value).any(axis=0)
    if indices:
        # Return the indices as well
        rast_shp = (shp[-2], shp[-1])
        return (np.indices(rast_shp)[:,idx.reshape(rast_shp)], arr[:,idx])

    return arr[:,idx] 
開發者ID:arthur-e,項目名稱:unmixing,代碼行數:37,代碼來源:utils.py

示例14: normalize_reflectance_within_image

# 需要導入模塊: from osgeo import gdal [as 別名]
# 或者: from osgeo.gdal import Dataset [as 別名]
def normalize_reflectance_within_image(
    rast, band_range=(0, 5), nodata=-9999, scale=100):
    '''
    Following Wu (2004, Remote Sensing of Environment), normalizes the
    reflectances in each pixel by the average reflectance *across bands.*
    This is an attempt to mitigate within-endmember variability. Arguments:
        rast    A gdal.Dataset or numpy.array instance
        nodata  The NoData value to use (and value to ignore)
        scale   (Optional) Wu's definition scales the normalized reflectance
                by 100 for some reason; another reasonable value would
                be 10,000 (approximating scale of Landsat reflectance units);
                set to None for no scaling.
    '''
    # Can accept either a gdal.Dataset or numpy.array instance
    if not isinstance(rast, np.ndarray):
        rastr = rast.ReadAsArray()

    else:
        rastr = rast.copy()

    shp = rastr.shape
    b0, b1 = band_range # Get the beginning, end of band range
    b1 += 1 # Ranges in Python are not inclusive, so add 1
    rastr_normalized = np.divide(
        rastr.reshape((shp[0], shp[1]*shp[2])),
        rastr[b0:b1,...].mean(axis=0).reshape((1, shp[1]*shp[2])).repeat(shp[0], axis=0))

    # Recover original shape; scale if necessary
    rastr_normalized = rastr_normalized.reshape(shp)
    if scale is not None:
        rastr_normalized = np.multiply(rastr_normalized, scale)

    # Fill in the NoData areas from the original raster
    np.place(rastr_normalized, rastr == nodata, nodata)
    return rastr_normalized 
開發者ID:arthur-e,項目名稱:unmixing,代碼行數:37,代碼來源:lsma.py

示例15: test_file_raster_and_array_access

# 需要導入模塊: from osgeo import gdal [as 別名]
# 或者: from osgeo.gdal import Dataset [as 別名]
def test_file_raster_and_array_access(self):
        '''
        Tests that essential file reading and raster/array conversion utilities
        are working properly.
        '''
        from_as_array = as_array(os.path.join(self.test_dir, 'multi3_raster.tiff'))
        from_as_raster = as_raster(os.path.join(self.test_dir, 'multi3_raster.tiff'))
        self.assertTrue(len(from_as_array) == len(from_as_raster) == 3)
        self.assertTrue(isinstance(from_as_array[0], np.ndarray))
        self.assertTrue(isinstance(from_as_raster[0], gdal.Dataset)) 
開發者ID:arthur-e,項目名稱:unmixing,代碼行數:12,代碼來源:tests.py


注:本文中的osgeo.gdal.Dataset方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。