本文整理匯總了Python中os.mkdirs方法的典型用法代碼示例。如果您正苦於以下問題:Python os.mkdirs方法的具體用法?Python os.mkdirs怎麽用?Python os.mkdirs使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類os
的用法示例。
在下文中一共展示了os.mkdirs方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: copy_readme_from_github
# 需要導入模塊: import os [as 別名]
# 或者: from os import mkdirs [as 別名]
def copy_readme_from_github(model_name, target_path):
print("downloading %s from github..." % model_name)
online_path = "https://github.com/thu-coai/%s/archive/master.zip" % model_name
local_path = os.path.join("..", "build", model_name + ".zip")
build_dir = os.path.join("..", "build")
local_dir = os.path.join("..", "build", model_name + "-master")
#os.mkdirs(local_path, exist_ok=True)
if os.path.exists(local_path):
print("skipping %s" % model_name)
else:
_http_get(online_path, open(local_path, "wb"))
unzip_file(local_path, build_dir)
shutil.copy(os.path.join(local_dir, "Readme.md"),
os.path.join(target_path, "Readme.md"))
shutil.copytree(os.path.join(local_dir, "images"),
os.path.join(target_path, "images"))
示例2: execute_frama_c
# 需要導入模塊: import os [as 別名]
# 或者: from os import mkdirs [as 別名]
def execute_frama_c(self, main):
if not os.path.islink(self.shortdest):
# print self.shortdest
# print self.patchdest
os.symlink(self.patchdest, self.shortdest)
if len(self.backupdir) > 0:
if not os.path.isdir(self.backupdir):
os.mkdirs(self.backupdir)
[shutil.copyfile(f.pp_path,
os.path.join(self.backupdir,
os.path.basename(f.pp_path)))
for f in self.preprocessed_files]
cmd = "%s %s %s %s %s" % (self.frama_c, self.paths(),
self.frama_c_main_arg, main, self.frama_c_args)
if self.execute:
if self.verbose:
print cmd
self.get_cmd_results(cmd)
else:
print cmd
print "\n"
示例3: vis_whtml
# 需要導入模塊: import os [as 別名]
# 或者: from os import mkdirs [as 別名]
def vis_whtml(im_path, im, captions, dets, pre_results=dict(),
thresh=0.5, save_path='./vis/data'):
print("visualizing with pretty html...")
if not os.path.exists(save_path):
os.mkdirs(save_path)
im_name = im_path.split('/')[-1][:-4]
box_xywh = []
box_caps = []
scores = []
for i in xrange(dets.shape[0]):
if dets[i, -1] > thresh:
box_xywh.append(box2xywh(dets[i, :4].tolist()))
box_caps.append(captions[i])
scores.append(float(dets[i, -1]))
# save image
im_new = np.copy(im)
cv2.imwrite("%s/%s.jpg" % (save_path, im_name), im_new)
result = {"img_name": "%s.jpg" % im_name,
"scores": scores,
"captions": box_caps,
"boxes": box_xywh}
pre_results["results"] = pre_results.get("results", []) + [result]
return pre_results
示例4: _cache_fname
# 需要導入模塊: import os [as 別名]
# 或者: from os import mkdirs [as 別名]
def _cache_fname(self, cache_dir):
# TODO: Potential problem if multiple SpikeTrains are opened at the same time, add salt to prevent collisions
if not os.path.exists(self._cache_dir):
os.mkdirs(self._cache_dir)
return os.path.join(cache_dir, '.sonata.spikes.cache.csv')
示例5: save
# 需要導入模塊: import os [as 別名]
# 或者: from os import mkdirs [as 別名]
def save(self):
""" Save the file on the local file system. Simply builds the paths
and calls :meth:`werkzeug.datastructures.FileStorage.save` on the
file object.
"""
fp = self.fp
filename = self.safe_filename(self.filename)
path = self.join(self.store_path, filename)
directory = os.path.dirname(path)
if not os.path.exists(directory):
# Taken from Django - Race condition between os.path.exists and
# os.mkdirs
try:
os.makedirs(directory)
except OSError as e:
if e.errno != errno.EEXIST:
raise
if not os.path.isdir(directory):
raise IOError('{0} is not a directory'.format(directory))
# Save the file
fp.save(path)
fp.close()
# Update the filename - it may have changes
self.filename = filename
示例6: makedirs
# 需要導入模塊: import os [as 別名]
# 或者: from os import mkdirs [as 別名]
def makedirs(self, path):
"""
Creates all missing directories specified by name. Analogue to os.mkdirs().
"""
return self.client.mkdir(path)
示例7: create_stl10
# 需要導入模塊: import os [as 別名]
# 或者: from os import mkdirs [as 別名]
def create_stl10(source = 'unlabeled_X.bin', outdir = 'slt10'):
'''
Generate SLT-10 images from matlab files.
'''
with open(source, 'rb') as f:
# read whole file in uint8 chunks
everything = np.fromfile(f, dtype=np.uint8)
# We force the data into 3x96x96 chunks, since the
# images are stored in "column-major order", meaning
# that "the first 96*96 values are the red channel,
# the next 96*96 are green, and the last are blue."
# The -1 is since the size of the pictures depends
# on the input file, and this way numpy determines
# the size on its own.
images = np.reshape(everything, (-1, 3, 96, 96))
# Now transpose the images into a standard image format
# readable by, for example, matplotlib.imshow
# You might want to comment this line or reverse the shuffle
# if you will use a learning algorithm like CNN, since they like
# their channels separated.
images = np.transpose(images, (0, 3, 2, 1))
images = images.astype(float) / 255.0
if not os.path.exists(outdir):
os.mkdirs(outdir)
nb_imgs = np.shape(images)[0]
for ii in range(nb_imgs):
print(ii, nb_imgs)
img = resize(images[ii,:,:,:], [48, 48])
imwrite(img, os.path.join(outdir, 'image_%06d.png' %(ii)))
示例8: train
# 需要導入模塊: import os [as 別名]
# 或者: from os import mkdirs [as 別名]
def train(model, optimizer, dataloader_src, dataloader_tar):
loss_class = torch.nn.CrossEntropyLoss()
best_acc = -float('inf')
len_dataloader = min(len(dataloader_src), len(dataloader_tar))
for epoch in range(args.nepoch):
model.train()
i = 1
for (data_src, data_tar) in tqdm.tqdm(zip(enumerate(dataloader_src), enumerate(dataloader_tar)), total=len_dataloader, leave=False):
_, (x_src, y_src) = data_src
_, (x_tar, _) = data_tar
x_src, y_src, x_tar = x_src.to(
DEVICE), y_src.to(DEVICE), x_tar.to(DEVICE)
p = float(i + epoch * len_dataloader) / args.nepoch / len_dataloader
alpha = 2. / (1. + np.exp(-10 * p)) - 1
class_output, err_s_domain = model(input_data=x_src, alpha=alpha)
err_s_label = loss_class(class_output, y_src)
_, err_t_domain = model(
input_data=x_tar, alpha=alpha, source=False)
err_domain = err_t_domain + err_s_domain
err = err_s_label + args.gamma * err_domain
optimizer.zero_grad()
err.backward()
optimizer.step()
i += 1
item_pr = 'Epoch: [{}/{}], classify_loss: {:.4f}, domain_loss_s: {:.4f}, domain_loss_t: {:.4f}, domain_loss: {:.4f},total_loss: {:.4f}'.format(
epoch, args.nepoch, err_s_label.item(), err_s_domain.item(), err_t_domain.item(), err_domain.item(), err.item())
print(item_pr)
fp = open(args.result_path, 'a')
fp.write(item_pr + '\n')
# test
acc_src = test(model, args.source, epoch)
acc_tar = test(model, args.target, epoch)
test_info = 'Source acc: {:.4f}, target acc: {:.4f}'.format(acc_src, acc_tar)
fp.write(test_info + '\n')
print(test_info)
fp.close()
if best_acc < acc_tar:
best_acc = acc_tar
if not os.path.exists(args.model_path):
os.mkdirs(args.model_path)
torch.save(model, '{}/mnist_mnistm.pth'.format(args.model_path))
print('Test acc: {:.4f}'.format(best_acc))