當前位置: 首頁>>代碼示例>>Python>>正文


Python optuna.create_study方法代碼示例

本文整理匯總了Python中optuna.create_study方法的典型用法代碼示例。如果您正苦於以下問題:Python optuna.create_study方法的具體用法?Python optuna.create_study怎麽用?Python optuna.create_study使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在optuna的用法示例。


在下文中一共展示了optuna.create_study方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: initialize_optuna

# 需要導入模塊: import optuna [as 別名]
# 或者: from optuna import create_study [as 別名]
def initialize_optuna(self):
        try:
            train_env = DummyVecEnv([lambda: TradingEnv(self.data_provider)])
            model = self.Model(self.Policy, train_env, nminibatches=1)
            strategy = self.Reward_Strategy()

            self.study_name = f'{model.__class__.__name__}__{model.act_model.__class__.__name__}__{strategy.__class__.__name__}'
        except:
            self.study_name = f'UnknownModel__UnknownPolicy__UnknownStrategy'

        self.optuna_study = optuna.create_study(
            study_name=self.study_name, storage=self.params_db_path, load_if_exists=True)

        self.logger.debug('Initialized Optuna:')

        try:
            self.logger.debug(
                f'Best reward in ({len(self.optuna_study.trials)}) trials: {self.optuna_study.best_value}')
        except:
            self.logger.debug('No trials have been finished yet.') 
開發者ID:notadamking,項目名稱:RLTrader,代碼行數:22,代碼來源:RLTrader.py

示例2: optimize_model

# 需要導入模塊: import optuna [as 別名]
# 或者: from optuna import create_study [as 別名]
def optimize_model(task, param_name, test_size: float, binary=False) -> None:
    x, y = task.create_train_data()

    def objective(trial):
        train_x, test_x, train_y, test_y = train_test_split(x, y, test_size=test_size)
        param = redshells.factory.get_optuna_param(param_name, trial)
        model = task.create_model()
        model.set_params(**param)
        model.fit(train_x, train_y)
        predictions = model.predict(test_x)

        if binary:
            predictions = np.rint(predictions)

        return 1.0 - sklearn.metrics.accuracy_score(test_y, predictions)

    study = optuna.create_study()
    study.optimize(objective, n_trials=100)
    task.dump(dict(best_params=study.best_params, best_value=study.best_value)) 
開發者ID:m3dev,項目名稱:redshells,代碼行數:21,代碼來源:utils.py

示例3: main

# 需要導入模塊: import optuna [as 別名]
# 或者: from optuna import create_study [as 別名]
def main():
    study = optuna.create_study(direction="maximize")
    study.optimize(objective, n_trials=25)
    pruned_trials = [t for t in study.trials if t.state == optuna.trial.TrialState.PRUNED]
    complete_trials = [t for t in study.trials if t.state == optuna.trial.TrialState.COMPLETE]
    print("Study statistics: ")
    print("  Number of finished trials: ", len(study.trials))
    print("  Number of pruned trials: ", len(pruned_trials))
    print("  Number of complete trials: ", len(complete_trials))

    print("Best trial:")
    trial = study.best_trial

    print("  Value: ", trial.value)

    print("  Params: ")
    for key, value in trial.params.items():
        print("    {}: {}".format(key, value))

    shutil.rmtree(MODEL_DIR) 
開發者ID:optuna,項目名稱:optuna,代碼行數:22,代碼來源:tensorflow_estimator_integration.py

示例4: main

# 需要導入模塊: import optuna [as 別名]
# 或者: from optuna import create_study [as 別名]
def main():
    study = optuna.create_study(direction="maximize")
    study.optimize(objective, n_trials=25, timeout=600)

    print("Number of finished trials: ", len(study.trials))

    print("Best trial:")
    trial = study.best_trial

    print("  Value: ", trial.value)

    print("  Params: ")
    for key, value in trial.params.items():
        print("    {}: {}".format(key, value))

    shutil.rmtree(MODEL_DIR) 
開發者ID:optuna,項目名稱:optuna,代碼行數:18,代碼來源:tensorflow_estimator_simple.py

示例5: test_plot_slice_log_scale

# 需要導入模塊: import optuna [as 別名]
# 或者: from optuna import create_study [as 別名]
def test_plot_slice_log_scale():
    # type: () -> None

    study = create_study()
    study.add_trial(
        create_trial(
            value=0.0,
            params={"x_linear": 1.0, "y_log": 1e-3,},
            distributions={
                "x_linear": UniformDistribution(0.0, 3.0),
                "y_log": LogUniformDistribution(1e-5, 1.0),
            },
        )
    )

    # Plot a parameter.
    figure = plot_slice(study, params=["y_log"])
    assert figure.layout["xaxis_type"] == "log"
    figure = plot_slice(study, params=["x_linear"])
    assert figure.layout["xaxis_type"] is None

    # Plot multiple parameters.
    figure = plot_slice(study)
    assert figure.layout["xaxis_type"] is None
    assert figure.layout["xaxis2_type"] == "log" 
開發者ID:optuna,項目名稱:optuna,代碼行數:27,代碼來源:test_slice.py

示例6: test_sample_relative_n_startup_trials

# 需要導入模塊: import optuna [as 別名]
# 或者: from optuna import create_study [as 別名]
def test_sample_relative_n_startup_trials() -> None:

    independent_sampler = DeterministicRelativeSampler({}, {})
    sampler = optuna.samplers.CmaEsSampler(
        n_startup_trials=2, independent_sampler=independent_sampler
    )
    study = optuna.create_study(sampler=sampler)

    def objective(t: optuna.Trial) -> float:

        value = t.suggest_int("x", -1, 1) + t.suggest_int("y", -1, 1)
        if t.number == 0:
            raise Exception("first trial is failed")
        return float(value)

    # The independent sampler is used for Trial#0 (FAILED), Trial#1 (COMPLETE)
    # and Trial#2 (COMPLETE). The CMA-ES is used for Trial#3 (COMPLETE).
    with patch.object(
        independent_sampler, "sample_independent", wraps=independent_sampler.sample_independent
    ) as mock_independent, patch.object(
        sampler, "sample_relative", wraps=sampler.sample_relative
    ) as mock_relative:
        study.optimize(objective, n_trials=4, catch=(Exception,))
        assert mock_independent.call_count == 6  # The objective function has two parameters.
        assert mock_relative.call_count == 4 
開發者ID:optuna,項目名稱:optuna,代碼行數:27,代碼來源:test_cmaes.py

示例7: test_log_uniform

# 需要導入模塊: import optuna [as 別名]
# 或者: from optuna import create_study [as 別名]
def test_log_uniform(sampler_class, distribution):
    # type: (typing.Callable[[], BaseSampler], LogUniformDistribution) -> None

    study = optuna.study.create_study(sampler=sampler_class())
    points = np.array(
        [
            study.sampler.sample_independent(study, _create_new_trial(study), "x", distribution)
            for _ in range(100)
        ]
    )
    assert np.all(points >= distribution.low)
    assert np.all(points < distribution.high)
    assert not isinstance(
        study.sampler.sample_independent(study, _create_new_trial(study), "x", distribution),
        np.floating,
    ) 
開發者ID:optuna,項目名稱:optuna,代碼行數:18,代碼來源:test_samplers.py

示例8: test_discrete_uniform

# 需要導入模塊: import optuna [as 別名]
# 或者: from optuna import create_study [as 別名]
def test_discrete_uniform(sampler_class, distribution):
    # type: (typing.Callable[[], BaseSampler], DiscreteUniformDistribution) -> None

    study = optuna.study.create_study(sampler=sampler_class())
    points = np.array(
        [
            study.sampler.sample_independent(study, _create_new_trial(study), "x", distribution)
            for _ in range(100)
        ]
    )
    assert np.all(points >= distribution.low)
    assert np.all(points <= distribution.high)
    assert not isinstance(
        study.sampler.sample_independent(study, _create_new_trial(study), "x", distribution),
        np.floating,
    )

    # Check all points are multiples of distribution.q.
    points = points
    points -= distribution.low
    points /= distribution.q
    round_points = np.round(points)
    np.testing.assert_almost_equal(round_points, points) 
開發者ID:optuna,項目名稱:optuna,代碼行數:25,代碼來源:test_samplers.py

示例9: test_int

# 需要導入模塊: import optuna [as 別名]
# 或者: from optuna import create_study [as 別名]
def test_int(sampler_class, distribution):
    # type: (typing.Callable[[], BaseSampler], IntUniformDistribution) -> None

    study = optuna.study.create_study(sampler=sampler_class())
    points = np.array(
        [
            study.sampler.sample_independent(study, _create_new_trial(study), "x", distribution)
            for _ in range(100)
        ]
    )
    assert np.all(points >= distribution.low)
    assert np.all(points <= distribution.high)
    assert not isinstance(
        study.sampler.sample_independent(study, _create_new_trial(study), "x", distribution),
        np.integer,
    ) 
開發者ID:optuna,項目名稱:optuna,代碼行數:18,代碼來源:test_samplers.py

示例10: test_categorical

# 需要導入模塊: import optuna [as 別名]
# 或者: from optuna import create_study [as 別名]
def test_categorical(sampler_class, choices):
    # type: (typing.Callable[[], BaseSampler], Sequence[CategoricalChoiceType]) -> None

    distribution = CategoricalDistribution(choices)

    study = optuna.study.create_study(sampler=sampler_class())

    def sample():
        # type: () -> float

        trial = _create_new_trial(study)
        param_value = study.sampler.sample_independent(study, trial, "x", distribution)
        return distribution.to_internal_repr(param_value)

    points = np.array([sample() for _ in range(100)])

    # 'x' value is corresponding to an index of distribution.choices.
    assert np.all(points >= 0)
    assert np.all(points <= len(distribution.choices) - 1)
    round_points = np.round(points)
    np.testing.assert_almost_equal(round_points, points) 
開發者ID:optuna,項目名稱:optuna,代碼行數:23,代碼來源:test_samplers.py

示例11: test_nan_objective_value

# 需要導入模塊: import optuna [as 別名]
# 或者: from optuna import create_study [as 別名]
def test_nan_objective_value(sampler_class):
    # type: (typing.Callable[[], BaseSampler]) -> None

    study = optuna.create_study(sampler=sampler_class())

    def objective(trial, base_value):
        # type: (Trial, float) -> float

        return trial.suggest_uniform("x", 0.1, 0.2) + base_value

    # Non NaN objective values.
    for i in range(10, 1, -1):
        study.optimize(lambda t: objective(t, i), n_trials=1, catch=())
    assert int(study.best_value) == 2

    # NaN objective values.
    study.optimize(lambda t: objective(t, float("nan")), n_trials=1, catch=())
    assert int(study.best_value) == 2

    # Non NaN objective value.
    study.optimize(lambda t: objective(t, 1), n_trials=1, catch=())
    assert int(study.best_value) == 1 
開發者ID:optuna,項目名稱:optuna,代碼行數:24,代碼來源:test_samplers.py

示例12: test_sample_independent_seed_fix

# 需要導入模塊: import optuna [as 別名]
# 或者: from optuna import create_study [as 別名]
def test_sample_independent_seed_fix() -> None:
    study = optuna.create_study()
    dist = optuna.distributions.UniformDistribution(1.0, 100.0)
    past_trials = [frozen_trial_factory(i, dist=dist) for i in range(1, 8)]

    # Prepare a trial and a sample for later checks.
    trial = frozen_trial_factory(8)
    sampler = TPESampler(n_startup_trials=5, seed=0)
    with patch.object(study._storage, "get_all_trials", return_value=past_trials):
        suggestion = sampler.sample_independent(study, trial, "param-a", dist)

    sampler = TPESampler(n_startup_trials=5, seed=0)
    with patch.object(study._storage, "get_all_trials", return_value=past_trials):
        assert sampler.sample_independent(study, trial, "param-a", dist) == suggestion

    sampler = TPESampler(n_startup_trials=5, seed=1)
    with patch.object(study._storage, "get_all_trials", return_value=past_trials):
        assert sampler.sample_independent(study, trial, "param-a", dist) != suggestion 
開發者ID:optuna,項目名稱:optuna,代碼行數:20,代碼來源:test_sampler.py

示例13: test_sample_independent_prior

# 需要導入模塊: import optuna [as 別名]
# 或者: from optuna import create_study [as 別名]
def test_sample_independent_prior() -> None:
    study = optuna.create_study()
    dist = optuna.distributions.UniformDistribution(1.0, 100.0)
    past_trials = [frozen_trial_factory(i, dist=dist) for i in range(1, 8)]

    # Prepare a trial and a sample for later checks.
    trial = frozen_trial_factory(8)
    sampler = TPESampler(n_startup_trials=5, seed=0)
    with patch.object(study._storage, "get_all_trials", return_value=past_trials):
        suggestion = sampler.sample_independent(study, trial, "param-a", dist)

    sampler = TPESampler(consider_prior=False, n_startup_trials=5, seed=0)
    with patch.object(study._storage, "get_all_trials", return_value=past_trials):
        assert sampler.sample_independent(study, trial, "param-a", dist) != suggestion

    sampler = TPESampler(prior_weight=0.5, n_startup_trials=5, seed=0)
    with patch.object(study._storage, "get_all_trials", return_value=past_trials):
        assert sampler.sample_independent(study, trial, "param-a", dist) != suggestion 
開發者ID:optuna,項目名稱:optuna,代碼行數:20,代碼來源:test_sampler.py

示例14: test_sample_independent_misc_arguments

# 需要導入模塊: import optuna [as 別名]
# 或者: from optuna import create_study [as 別名]
def test_sample_independent_misc_arguments() -> None:
    study = optuna.create_study()
    dist = optuna.distributions.UniformDistribution(1.0, 100.0)
    past_trials = [frozen_trial_factory(i, dist=dist) for i in range(1, 8)]

    # Prepare a trial and a sample for later checks.
    trial = frozen_trial_factory(8)
    sampler = TPESampler(n_startup_trials=5, seed=0)
    with patch.object(study._storage, "get_all_trials", return_value=past_trials):
        suggestion = sampler.sample_independent(study, trial, "param-a", dist)

    # Test misc. parameters.
    sampler = TPESampler(n_ei_candidates=13, n_startup_trials=5, seed=0)
    with patch.object(study._storage, "get_all_trials", return_value=past_trials):
        assert sampler.sample_independent(study, trial, "param-a", dist) != suggestion

    sampler = TPESampler(gamma=lambda _: 5, n_startup_trials=5, seed=0)
    with patch.object(study._storage, "get_all_trials", return_value=past_trials):
        assert sampler.sample_independent(study, trial, "param-a", dist) != suggestion

    sampler = TPESampler(
        weights=lambda i: np.asarray([i * 0.11 for i in range(7)]), n_startup_trials=5, seed=0
    )
    with patch("optuna.Study.get_trials", return_value=past_trials):
        assert sampler.sample_independent(study, trial, "param-a", dist) != suggestion 
開發者ID:optuna,項目名稱:optuna,代碼行數:27,代碼來源:test_sampler.py

示例15: test_sample_independent_log_uniform_distributions

# 需要導入模塊: import optuna [as 別名]
# 或者: from optuna import create_study [as 別名]
def test_sample_independent_log_uniform_distributions() -> None:
    """Prepare sample from uniform distribution for cheking other distributions."""
    study = optuna.create_study()

    uni_dist = optuna.distributions.UniformDistribution(1.0, 100.0)
    past_trials = [frozen_trial_factory(i, dist=uni_dist) for i in range(1, 8)]
    trial = frozen_trial_factory(8)
    sampler = TPESampler(n_startup_trials=5, seed=0)
    with patch.object(study._storage, "get_all_trials", return_value=past_trials):
        uniform_suggestion = sampler.sample_independent(study, trial, "param-a", uni_dist)

    # Test sample from log-uniform is different from uniform.
    log_dist = optuna.distributions.LogUniformDistribution(1.0, 100.0)
    past_trials = [frozen_trial_factory(i, dist=log_dist) for i in range(1, 8)]
    trial = frozen_trial_factory(8)
    sampler = TPESampler(n_startup_trials=5, seed=0)
    with patch.object(study._storage, "get_all_trials", return_value=past_trials):
        loguniform_suggestion = sampler.sample_independent(study, trial, "param-a", log_dist)
    assert 1.0 <= loguniform_suggestion < 100.0
    assert uniform_suggestion != loguniform_suggestion 
開發者ID:optuna,項目名稱:optuna,代碼行數:22,代碼來源:test_sampler.py


注:本文中的optuna.create_study方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。