本文整理匯總了Python中opts.opts方法的典型用法代碼示例。如果您正苦於以下問題:Python opts.opts方法的具體用法?Python opts.opts怎麽用?Python opts.opts使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類opts
的用法示例。
在下文中一共展示了opts.opts方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_stacked_hourglass
# 需要導入模塊: import opts [as 別名]
# 或者: from opts import opts [as 別名]
def test_stacked_hourglass():
level = 5
channels = [256, 256, 384, 384, 384, 512]
num_blocks = [2, 2, 2, 2, 2, 4]
num_stacks = 2
import sys
sys.path.insert(0, "/export/guanghan/CenterNet-Gluon/")
sys.path.insert(0, "/Users/guanghan.ning/Desktop/dev/CenterNet-Gluon/")
from opts import opts
opt = opts().init()
print(opt.arch)
print(opt.heads)
blk = stacked_hourglass(level, num_stacks, channels, num_blocks, opt.heads)
blk.initialize()
X = nd.random.uniform(shape=(1, 3, 512, 512))
Y = blk(X)
print("\t Input shape: ", X.shape)
print("\t output len:", len(Y))
示例2: test_inference
# 需要導入模塊: import opts [as 別名]
# 或者: from opts import opts [as 別名]
def test_inference():
from opts import opts
from detectors.pose_detector import PoseDetector
opt = opts()
opt = opt.init()
detector = PoseDetector(opt)
detector.model = load_model(detector.model, opt.pretrained_path, ctx = ctx)
img_path = "/Users/guanghan.ning/Desktop/dev/CenterNet-Gluon/assets/demo.jpg"
ret = detector.run(img_path)
results[img_id] = ret['results']
time_stats = ['tot', 'load', 'pre', 'net', 'dec', 'post', 'merge']
avg_time_stats = {t: AverageMeter() for t in time_stats}
print_message = ''
for t in avg_time_stats:
avg_time_stats[t].update(ret[t])
print_message += '|{} {:.3f} '.format(t, avg_time_stats[t].avg)
print(print_message)
return
示例3: main
# 需要導入模塊: import opts [as 別名]
# 或者: from opts import opts [as 別名]
def main():
opt = opts().parse()
now = datetime.datetime.now()
logger = Logger(opt.saveDir + '/logs_{}'.format(now.isoformat()))
if opt.loadModel == 'none':
model = inflate(opt).cuda()
elif opt.loadModel == 'scratch':
model = Pose3D(opt.nChannels, opt.nStack, opt.nModules, opt.numReductions, opt.nRegModules, opt.nRegFrames, ref.nJoints).cuda()
else :
model = torch.load(opt.loadModel).cuda()
train_loader = torch.utils.data.DataLoader(
h36m('train',opt),
batch_size = opt.dataloaderSize,
shuffle = False,
num_workers = int(ref.nThreads)
)
optimizer = torch.optim.RMSprop(
[{'params': model.parameters(), 'lr': opt.LRhg}],
alpha = ref.alpha,
eps = ref.epsilon,
weight_decay = ref.weightDecay,
momentum = ref.momentum
)
for epoch in range(1, opt.nEpochs + 1):
loss_train, acc_train = train(epoch, opt, train_loader, model, optimizer)
logger.scalar_summary('loss_train', loss_train, epoch)
logger.scalar_summary('acc_train', acc_train, epoch)
logger.write('{:8f} {:8f} \n'.format(loss_train, acc_train))
logger.close()
示例4: inflate
# 需要導入模塊: import opts [as 別名]
# 或者: from opts import opts [as 別名]
def inflate(opt = None):
if opt is not None:
model3d = Pose3D(opt.nChannels, opt.nStack, opt.nModules, opt.numReductions, opt.nRegModules, opt.nRegFrames, ref.nJoints, ref.temporal)
Inflate.nChannels = opt.nChannels
Inflate.nStack = opt.nStack
Inflate.nModules = opt.nModules
Inflate.nRegFrames = opt.nRegFrames
Inflate.nJoints = ref.nJoints
Inflate.scheme = opt.scheme
Inflate.mult = opt.mult
else :
opt = opts().parse()
Inflate.nChannels = opt.nChannels
Inflate.nStack = opt.nStack
Inflate.nModules = opt.nModules
Inflate.nRegFrames = opt.nRegFrames
Inflate.nJoints = ref.nJoints
Inflate.scheme = opt.scheme
model3d = Pose3D(opt.nChannels, opt.nStack, opt.nModules, opt.numReductions, opt.nRegModules, opt.nRegFrames, ref.nJoints, ref.temporal)
pickle.Unpickler = partial(pickle.Unpickler, encoding="latin1")
pickle.load = partial(pickle.load, encoding="latin1")
if opt is not None:
model = torch.load(opt.Model2D)
else:
model = torch.load('models/xingy.pth') #, map_location=lambda storage, loc: storage)
Inflate.inflatePose3D(model3d, model)
torch.save(model3d,open('inflatedModel.pth','wb'))
return model3d
#inflate()
示例5: main
# 需要導入模塊: import opts [as 別名]
# 或者: from opts import opts [as 別名]
def main():
# parse arguments, build exp dir
opt = opts()
args = opt.parse()
train_op.initialize_experiment_directories(args)
train_op.platform_specific_initialization(args)
# build data loader
train_loader,val_loader=buildDataset(args)
# build learner
lp = learnerParam()
model=learner(args,lp)
# build trainer and launch training
mytrainer=trainer(
model,
train_loader,
val_loader,
max_epoch=200,
)
mytrainer.add_callbacks([PeriodicCallback(cb_loc=CallbackLoc.epoch_end,pstep=5,func=model.save_checkpoint)])
mytrainer.add_callbacks([PeriodicCallback(cb_loc=CallbackLoc.epoch_end,pstep=5,func=model.evalPlot)])
mytrainer.run()
示例6: test_load
# 需要導入模塊: import opts [as 別名]
# 或者: from opts import opts [as 別名]
def test_load():
from opts import opts
opt = opts().init()
batch_size = 16
#batchify_fn = Tuple(Stack(), Stack(), Stack(), Stack()) # stack image, heatmaps, scale, offset
batchify_fn = Tuple(Stack(), Stack(), Stack(), Stack(), Stack(), Stack()) # stack image, heatmaps, scale, offset, ind, mask
num_workers = 2
train_dataset = CenterCOCODataset(opt, split = 'train')
train_loader = gluon.data.DataLoader( train_dataset,
batch_size, True, batchify_fn=batchify_fn, last_batch='rollover', num_workers=num_workers)
ctx = [mx.gpu(int(i)) for i in opt.gpus_str.split(',') if i.strip()]
ctx = ctx if ctx else [mx.cpu()]
for i, batch in enumerate(train_loader):
print("{} Batch".format(i))
print("image batch shape: ", batch[0].shape)
print("heatmap batch shape", batch[1].shape)
print("scale batch shape", batch[2].shape)
print("offset batch shape", batch[3].shape)
print("indices batch shape", batch[4].shape)
print("mask batch shape", batch[5].shape)
X = gluon.utils.split_and_load(batch[0], ctx_list=ctx, batch_axis=0)
targets_heatmaps = gluon.utils.split_and_load(batch[1], ctx_list=ctx, batch_axis=0) # heatmaps: (batch, num_classes, H/S, W/S)
targets_scale = gluon.utils.split_and_load(batch[2], ctx_list=ctx, batch_axis=0) # scale: wh (batch, 2, H/S, W/S)
targets_offset = gluon.utils.split_and_load(batch[3], ctx_list=ctx, batch_axis=0) # offset: xy (batch, 2, H/s, W/S)
targets_inds = gluon.utils.split_and_load(batch[4], ctx_list=ctx, batch_axis=0)
targets_mask = gluon.utils.split_and_load(batch[5], ctx_list=ctx, batch_axis=0)
print("len(targets_heatmaps): ", len(targets_heatmaps))
print("First item: image shape: ", X[0].shape)
print("First item: heatmaps shape: ", targets_heatmaps[0].shape)
print("First item: scalemaps shape: ", targets_scale[0].shape)
print("First item: offsetmaps shape: ", targets_offset[0].shape)
print("First item: indices shape: ", targets_inds[0].shape)
print("First item: mask shape: ", targets_mask[0].shape)
return
示例7: prefetch_test
# 需要導入模塊: import opts [as 別名]
# 或者: from opts import opts [as 別名]
def prefetch_test(opt):
os.environ['CUDA_VISIBLE_DEVICES'] = opt.gpus_str
Dataset = dataset_factory[opt.dataset]
opt = opts().update_dataset_info_and_set_heads(opt, Dataset)
print(opt)
Logger(opt)
Detector = detector_factory[opt.task]
split = 'val' if not opt.trainval else 'test'
dataset = Dataset(opt, split)
detector = Detector(opt)
data_loader = torch.utils.data.DataLoader(
PrefetchDataset(opt, dataset, detector.pre_process),
batch_size=1, shuffle=False, num_workers=1, pin_memory=True)
results = {}
num_iters = len(dataset)
bar = Bar('{}'.format(opt.exp_id), max=num_iters)
time_stats = ['tot', 'load', 'pre', 'net', 'dec', 'post', 'merge']
avg_time_stats = {t: AverageMeter() for t in time_stats}
for ind, (img_id, pre_processed_images) in enumerate(data_loader):
ret = detector.run(pre_processed_images)
results[img_id.numpy().astype(np.int32)[0]] = ret['results']
Bar.suffix = '[{0}/{1}]|Tot: {total:} |ETA: {eta:} '.format(
ind, num_iters, total=bar.elapsed_td, eta=bar.eta_td)
for t in avg_time_stats:
avg_time_stats[t].update(ret[t])
Bar.suffix = Bar.suffix + '|{} {tm.val:.3f}s ({tm.avg:.3f}s) '.format(
t, tm = avg_time_stats[t])
bar.next()
bar.finish()
dataset.run_eval(results, opt.save_dir)
示例8: test
# 需要導入模塊: import opts [as 別名]
# 或者: from opts import opts [as 別名]
def test(opt):
os.environ['CUDA_VISIBLE_DEVICES'] = opt.gpus_str
Dataset = dataset_factory[opt.dataset]
opt = opts().update_dataset_info_and_set_heads(opt, Dataset)
print(opt)
Logger(opt)
Detector = detector_factory[opt.task]
split = 'val' if not opt.trainval else 'test'
dataset = Dataset(opt, split)
detector = Detector(opt)
results = {}
num_iters = len(dataset)
for ind in tqdm(range(num_iters)):
img_id = dataset.images[ind]
img_info = dataset.coco.loadImgs(ids=[img_id])[0]
img_path = os.path.join(dataset.img_dir, img_info['file_name'])
if opt.task == 'ddd':
ret = detector.run(img_path, img_info['calib'])
else:
ret = detector.run(img_path)
results[img_id] = ret['results']
dataset.run_eval(results, opt.save_dir)
示例9: test
# 需要導入模塊: import opts [as 別名]
# 或者: from opts import opts [as 別名]
def test(opt):
os.environ['CUDA_VISIBLE_DEVICES'] = opt.gpus_str
Dataset = dataset_factory[opt.dataset]
opt = opts().update_dataset_info_and_set_heads(opt, Dataset)
print(opt)
Logger(opt)
Detector = detector_factory[opt.task]
split = 'val' if not opt.trainval else 'test'
dataset = Dataset(opt, split)
detector = Detector(opt)
results = {}
num_iters = len(dataset)
bar = Bar('{}'.format(opt.exp_id), max=num_iters)
time_stats = ['tot', 'load', 'pre', 'net', 'dec', 'post', 'merge']
avg_time_stats = {t: AverageMeter() for t in time_stats}
for ind in range(num_iters):
img_id = dataset.images[ind]
img_info = dataset.coco.loadImgs(ids=[img_id])[0]
img_path = os.path.join(dataset.img_dir, img_info['file_name'])
if opt.task == 'ddd':
ret = detector.run(img_path, img_info['calib'])
else:
ret = detector.run(img_path)
results[img_id] = ret['results']
Bar.suffix = '[{0}/{1}]|Tot: {total:} |ETA: {eta:} '.format(
ind, num_iters, total=bar.elapsed_td, eta=bar.eta_td)
for t in avg_time_stats:
avg_time_stats[t].update(ret[t])
Bar.suffix = Bar.suffix + '|{} {:.3f} '.format(t, avg_time_stats[t].avg)
bar.next()
bar.finish()
dataset.run_eval(results, opt.save_dir)
示例10: main
# 需要導入模塊: import opts [as 別名]
# 或者: from opts import opts [as 別名]
def main():
opt = opts().parse()
if opt.loadModel == '':
opt.loadModel = '../models/Pascal3D-cpu.pth'
model = torch.load(opt.loadModel)
img = cv2.imread(opt.demo)
s = max(img.shape[0], img.shape[1]) * 1.0
c = np.array([img.shape[1] / 2., img.shape[0] / 2.])
img = Crop(img, c, s, 0, ref.inputRes).astype(np.float32).transpose(2, 0, 1) / 256.
input = torch.from_numpy(img.copy()).float()
input = input.view(1, input.size(0), input.size(1), input.size(2))
input_var = torch.autograd.Variable(input).float()
if opt.GPU > -1:
model = model.cuda(opt.GPU)
input_var = input_var.cuda(opt.GPU)
output = model(input_var)
hm = output[-1].data.cpu().numpy()
debugger = Debugger()
img = (input[0].numpy().transpose(1, 2, 0)*256).astype(np.uint8).copy()
inp = img.copy()
star = (cv2.resize(hm[0, 0], (ref.inputRes, ref.inputRes)) * 255)
star[star > 255] = 255
star[star < 0] = 0
star = np.tile(star, (3, 1, 1)).transpose(1, 2, 0)
trans = 0.8
star = (trans * star + (1. - trans) * img).astype(np.uint8)
ps = parseHeatmap(hm[0], thresh = 0.1)
canonical, pred, color, score = [], [], [], []
for k in range(len(ps[0])):
x, y, z = ((hm[0, 1:4, ps[0][k], ps[1][k]] + 0.5) * ref.outputRes).astype(np.int32)
dep = ((hm[0, 4, ps[0][k], ps[1][k]] + 0.5) * ref.outputRes).astype(np.int32)
canonical.append([x, y, z])
pred.append([ps[1][k], ref.outputRes - dep, ref.outputRes - ps[0][k]])
score.append(hm[0, 0, ps[0][k], ps[1][k]])
color.append((1.0 * x / ref.outputRes, 1.0 * y / ref.outputRes, 1.0 * z / ref.outputRes))
cv2.circle(img, (ps[1][k] * 4, ps[0][k] * 4), 4, (255, 255, 255), -1)
cv2.circle(img, (ps[1][k] * 4, ps[0][k] * 4), 2, (int(z * 4), int(y * 4), int(x * 4)), -1)
pred = np.array(pred).astype(np.float32)
canonical = np.array(canonical).astype(np.float32)
pointS = canonical * 1.0 / ref.outputRes
pointT = pred * 1.0 / ref.outputRes
R, t, s = horn87(pointS.transpose(), pointT.transpose(), score)
rotated_pred = s * np.dot(R, canonical.transpose()).transpose() + t * ref.outputRes
debugger.addImg(inp, 'inp')
debugger.addImg(star, 'star')
debugger.addImg(img, 'nms')
debugger.addPoint3D(canonical / ref.outputRes - 0.5, c = color, marker = '^')
debugger.addPoint3D(pred / ref.outputRes - 0.5, c = color, marker = 'x')
debugger.addPoint3D(rotated_pred / ref.outputRes - 0.5, c = color, marker = '*')
debugger.showAllImg(pause = True)
debugger.show3D()
示例11: test_load
# 需要導入模塊: import opts [as 別名]
# 或者: from opts import opts [as 別名]
def test_load():
from opts import opts
opt = opts().init()
batch_size = 16
# inp, hm, wh, reg, dep, dim, rotbin, rotres, ind, reg_mask, rot_mask, meta
batchify_fn = Tuple(Stack(), Stack(), Stack(), Stack(), Stack(), Stack(), Stack(), Stack(), Stack(), Stack(), Stack())
num_workers = 2
train_dataset = CenterKITTIDataset(opt, split = 'train')
train_loader = gluon.data.DataLoader( train_dataset,
batch_size, True, batchify_fn=batchify_fn, last_batch='rollover', num_workers=num_workers)
ctx = [mx.gpu(int(i)) for i in opt.gpus_str.split(',') if i.strip()]
ctx = ctx if ctx else [mx.cpu()]
for i, batch in enumerate(train_loader):
print("{} Batch".format(i))
print("image batch shape: ", batch[0].shape)
print("center batch shape", batch[1].shape)
print("2d wh batch shape", batch[2].shape)
print("2d offset batch shape", batch[3].shape)
print("3d depth batch shape", batch[4].shape)
print("3d dimension batch shape", batch[5].shape)
print("3d rotbin batch shape", batch[6].shape)
print("3d rotres batch shape", batch[7].shape)
print("indices batch shape", batch[8].shape)
print("2d offset mask batch shape", batch[9].shape)
print("3d rotation mask batch shape", batch[10].shape)
X = gluon.utils.split_and_load(batch[0], ctx_list=ctx, batch_axis=0)
targets_center = gluon.utils.split_and_load(batch[1], ctx_list=ctx, batch_axis=0) # heatmaps: (batch, num_classes, H/S, W/S)
targets_2d_wh = gluon.utils.split_and_load(batch[2], ctx_list=ctx, batch_axis=0) # scale: wh (batch, 2, H/S, W/S)
targets_2d_offset = gluon.utils.split_and_load(batch[3], ctx_list=ctx, batch_axis=0) # offset: xy (batch, 2, H/s, W/S)
targets_3d_depth = gluon.utils.split_and_load(batch[4], ctx_list=ctx, batch_axis=0)
targets_3d_dim = gluon.utils.split_and_load(batch[5], ctx_list=ctx, batch_axis=0)
targets_3d_rotbin = gluon.utils.split_and_load(batch[6], ctx_list=ctx, batch_axis=0)
targets_3d_rotres = gluon.utils.split_and_load(batch[7], ctx_list=ctx, batch_axis=0)
targets_inds = gluon.utils.split_and_load(batch[8], ctx_list=ctx, batch_axis=0)
targets_2d_wh_mask = gluon.utils.split_and_load(batch[9], ctx_list=ctx, batch_axis=0)
targets_3d_rot_mask = gluon.utils.split_and_load(batch[10], ctx_list=ctx, batch_axis=0)
print("len(targets_center): ", len(targets_center))
print("First item: image shape: ", X[0].shape)
print("First item: center heatmap shape: ", targets_center[0].shape)
return
示例12: test_load
# 需要導入模塊: import opts [as 別名]
# 或者: from opts import opts [as 別名]
def test_load():
from opts import opts
opt = opts().init()
batch_size = 16
# inp, hm, wh, reg, dep, dim, rotbin, rotres, ind, reg_mask, rot_mask, meta
batchify_fn = Tuple(Stack(), Stack(), Stack(), Stack(), Stack(), Stack(), Stack(), Stack(), Stack(), Stack(), Stack(), Stack())
num_workers = 2
train_dataset = CenterMultiPoseDataset(opt, split = 'train')
train_loader = gluon.data.DataLoader( train_dataset,
batch_size, True, batchify_fn=batchify_fn, last_batch='rollover', num_workers=num_workers)
ctx = [mx.gpu(int(i)) for i in opt.gpus_str.split(',') if i.strip()]
ctx = ctx if ctx else [mx.cpu()]
'''
inp, ind, \
hm, wh, reg, reg_mask, \ # 2d detection: center, wh, offset
kps, kps_mask, \ # 2d pose: joint locations relative to center
hm_hp, hp_offset, hp_ind, hp_mask # 2d pose: joint heapmaps (and offset to compoensate discretization)
'''
for i, batch in enumerate(train_loader):
print("{} Batch".format(i))
print("image batch shape: ", batch[0].shape)
print("indices batch shape", batch[1].shape)
print("center batch shape", batch[2].shape)
print("2d wh batch shape", batch[3].shape)
print("2d offset batch shape", batch[4].shape)
print("2d offset mask batch shape", batch[5].shape)
print("pose relative to center batch shape", batch[6].shape)
print("pose relative to center mask batch shape", batch[7].shape)
print("pose heatmap batch shape", batch[8].shape)
print("pose heatmap offset batch shape", batch[9].shape)
print("pose heatmap ind shape", batch[10].shape)
print("pose heatmap mask batch shape", batch[11].shape)
X = gluon.utils.split_and_load(batch[0], ctx_list=ctx, batch_axis=0)
targets_inds = gluon.utils.split_and_load(batch[1], ctx_list=ctx, batch_axis=0)
targets_center = gluon.utils.split_and_load(batch[2], ctx_list=ctx, batch_axis=0) # heatmaps: (batch, num_classes, H/S, W/S)
targets_2d_wh = gluon.utils.split_and_load(batch[3], ctx_list=ctx, batch_axis=0) # scale: wh (batch, 2, H/S, W/S)
targets_2d_offset = gluon.utils.split_and_load(batch[4], ctx_list=ctx, batch_axis=0) # offset: xy (batch, 2, H/s, W/S)
targets_2d_wh_mask = gluon.utils.split_and_load(batch[5], ctx_list=ctx, batch_axis=0)
targets_poserel = gluon.utils.split_and_load(batch[6], ctx_list=ctx, batch_axis=0)
targets_poserel_mask = gluon.utils.split_and_load(batch[7], ctx_list=ctx, batch_axis=0)
targets_posemap = gluon.utils.split_and_load(batch[8], ctx_list=ctx, batch_axis=0)
targets_posemap_offset = gluon.utils.split_and_load(batch[9], ctx_list=ctx, batch_axis=0)
targets_posemap_ind = gluon.utils.split_and_load(batch[10], ctx_list=ctx, batch_axis=0)
targets_posemap_mask = gluon.utils.split_and_load(batch[11], ctx_list=ctx, batch_axis=0)
print("len(targets_center): ", len(targets_center))
print("First item: image shape: ", X[0].shape)
print("First item: center heatmap shape: ", targets_center[0].shape)
return
示例13: main
# 需要導入模塊: import opts [as 別名]
# 或者: from opts import opts [as 別名]
def main():
opt = opts().parse()
now = datetime.datetime.now()
logger = Logger(opt.saveDir, now.isoformat())
model, optimizer = getModel(opt)
criterion = torch.nn.MSELoss().cuda()
# if opt.GPU > -1:
# print('Using GPU {}',format(opt.GPU))
# model = model.cuda(opt.GPU)
# criterion = criterion.cuda(opt.GPU)
# dev = opt.device
model = model.cuda()
val_loader = torch.utils.data.DataLoader(
MPII(opt, 'val'),
batch_size = 1,
shuffle = False,
num_workers = int(ref.nThreads)
)
if opt.test:
log_dict_train, preds = val(0, opt, val_loader, model, criterion)
sio.savemat(os.path.join(opt.saveDir, 'preds.mat'), mdict = {'preds': preds})
return
# pyramidnet pretrain一次,先定義gen的訓練數據loader
train_loader = torch.utils.data.DataLoader(
MPII(opt, 'train'),
batch_size = opt.trainBatch,
shuffle = True if opt.DEBUG == 0 else False,
num_workers = int(ref.nThreads)
)
# 調用train方法
for epoch in range(1, opt.nEpochs + 1):
log_dict_train, _ = train(epoch, opt, train_loader, model, criterion, optimizer)
for k, v in log_dict_train.items():
logger.scalar_summary('train_{}'.format(k), v, epoch)
logger.write('{} {:8f} | '.format(k, v))
if epoch % opt.valIntervals == 0:
log_dict_val, preds = val(epoch, opt, val_loader, model, criterion)
for k, v in log_dict_val.items():
logger.scalar_summary('val_{}'.format(k), v, epoch)
logger.write('{} {:8f} | '.format(k, v))
#saveModel(model, optimizer, os.path.join(opt.saveDir, 'model_{}.checkpoint'.format(epoch)))
torch.save(model, os.path.join(opt.saveDir, 'model_{}.pth'.format(epoch)))
sio.savemat(os.path.join(opt.saveDir, 'preds_{}.mat'.format(epoch)), mdict = {'preds': preds})
logger.write('\n')
if epoch % opt.dropLR == 0:
lr = opt.LR * (0.1 ** (epoch // opt.dropLR))
print('Drop LR to {}'.format(lr))
adjust_learning_rate(optimizer, lr)
logger.close()
torch.save(model.cpu(), os.path.join(opt.saveDir, 'model_cpu.pth'))