當前位置: 首頁>>代碼示例>>Python>>正文


Python inference_engine.IEPlugin方法代碼示例

本文整理匯總了Python中openvino.inference_engine.IEPlugin方法的典型用法代碼示例。如果您正苦於以下問題:Python inference_engine.IEPlugin方法的具體用法?Python inference_engine.IEPlugin怎麽用?Python inference_engine.IEPlugin使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在openvino.inference_engine的用法示例。


在下文中一共展示了inference_engine.IEPlugin方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from openvino import inference_engine [as 別名]
# 或者: from openvino.inference_engine import IEPlugin [as 別名]
def __init__(self, devid, frameBuffer, results, camera_width, camera_height, number_of_ncs, vidfps):
        self.devid = devid
        self.frameBuffer = frameBuffer
        self.model_xml = "./lrmodels/YoloV3/FP16/frozen_yolo_v3.xml"
        self.model_bin = "./lrmodels/YoloV3/FP16/frozen_yolo_v3.bin"
        self.camera_width = camera_width
        self.camera_height = camera_height
        self.m_input_size = 416
        self.threshould = 0.7
        self.num_requests = 4
        self.inferred_request = [0] * self.num_requests
        self.heap_request = []
        self.inferred_cnt = 0
        self.plugin = IEPlugin(device="MYRIAD")
        self.net = IENetwork(model=self.model_xml, weights=self.model_bin)
        self.input_blob = next(iter(self.net.inputs))
        self.exec_net = self.plugin.load(network=self.net, num_requests=self.num_requests)
        self.results = results
        self.number_of_ncs = number_of_ncs
        self.predict_async_time = 800
        self.skip_frame = 0
        self.roop_frame = 0
        self.vidfps = vidfps
        self.new_w = int(camera_width * self.m_input_size/camera_width)
        self.new_h = int(camera_height * self.m_input_size/camera_height) 
開發者ID:PINTO0309,項目名稱:OpenVINO-YoloV3,代碼行數:27,代碼來源:openvino_yolov3_MultiStick_test.py

示例2: __init__

# 需要導入模塊: from openvino import inference_engine [as 別名]
# 或者: from openvino.inference_engine import IEPlugin [as 別名]
def __init__(self, devid, frameBuffer, results, camera_width, camera_height, number_of_ncs, vidfps):
        self.devid = devid
        self.frameBuffer = frameBuffer
        self.model_xml = "./lrmodels/tiny-YoloV3/FP16/frozen_tiny_yolo_v3.xml"
        self.model_bin = "./lrmodels/tiny-YoloV3/FP16/frozen_tiny_yolo_v3.bin"
        self.camera_width = camera_width
        self.camera_height = camera_height
        self.m_input_size = 416
        self.threshould = 0.4
        self.num_requests = 4
        self.inferred_request = [0] * self.num_requests
        self.heap_request = []
        self.inferred_cnt = 0
        self.plugin = IEPlugin(device="MYRIAD")
        self.net = IENetwork(model=self.model_xml, weights=self.model_bin)
        self.input_blob = next(iter(self.net.inputs))
        self.exec_net = self.plugin.load(network=self.net, num_requests=self.num_requests)
        self.results = results
        self.number_of_ncs = number_of_ncs
        self.predict_async_time = 800
        self.skip_frame = 0
        self.roop_frame = 0
        self.vidfps = vidfps
        self.new_w = int(camera_width * self.m_input_size/camera_width)
        self.new_h = int(camera_height * self.m_input_size/camera_height) 
開發者ID:PINTO0309,項目名稱:OpenVINO-YoloV3,代碼行數:27,代碼來源:openvino_tiny-yolov3_MultiStick_test.py

示例3: setup_network

# 需要導入模塊: from openvino import inference_engine [as 別名]
# 或者: from openvino.inference_engine import IEPlugin [as 別名]
def setup_network():
    global ARGS
    # Select the myriad plugin and IRs to be used
    plugin = IEPlugin(device='MYRIAD')
    net = IENetwork(model = ARGS.ir, weights = ARGS.ir[:-3] + 'bin')
    # Set up the input and output blobs
    input_blob = next(iter(net.inputs))
    output_blob = next(iter(net.outputs))

    # Load the network and get the network shape information
    exec_net = plugin.load(network = net)
    input_shape = net.inputs[input_blob].shape
    output_shape = net.outputs[output_blob].shape
    del net
    display_info(input_shape, output_shape)

    return input_shape, input_blob, output_blob, exec_net 
開發者ID:movidius,項目名稱:ncappzoo,代碼行數:19,代碼來源:run.py

示例4: classify_frame

# 需要導入模塊: from openvino import inference_engine [as 別名]
# 或者: from openvino.inference_engine import IEPlugin [as 別名]
def classify_frame(inputQueue, outputQueue):
	plugin = IEPlugin("MYRIAD")
	net = IENetwork(model=model_xml, weights=model_bin)
	input_blob = next(iter(net.inputs))
	exec_net = plugin.load(network=net)
# keep looping
	while True:
		# check to see if there is a frame in our input queue
		if not inputQueue.empty():
			# grab the frame from the input queue, resize it, and
			# construct a blob from it
			image = inputQueue.get()
			prepimg = cv2.resize(image, (416, 416))
			prepimg = prepimg[np.newaxis, :, :, :]     # Batch size axis add
			prepimg = prepimg.transpose((0, 3, 1, 2))  # NHWC to NCHW
			outputs = exec_net.infer(inputs={input_blob: prepimg})
			# write the detections to the output queue
			outputQueue.put(outputs)
			

# initialize the input queue (frames), output queue (out),
# and the list of actual detections returned by the child process 
開發者ID:leswright1977,項目名稱:RPi3_NCS2,代碼行數:24,代碼來源:yolo_test_threaded.py

示例5: __init__

# 需要導入模塊: from openvino import inference_engine [as 別名]
# 或者: from openvino.inference_engine import IEPlugin [as 別名]
def __init__(self, devid, frameBuffer, results, camera_mode, camera_width, camera_height, number_of_ncs, vidfps, skpfrm):
        self.devid = devid
        self.frameBuffer = frameBuffer
        self.model_xml = "./lrmodel/MobileNetSSD/MobileNetSSD_deploy.xml"
        self.model_bin = "./lrmodel/MobileNetSSD/MobileNetSSD_deploy.bin"
        self.camera_width = camera_width
        self.camera_height = camera_height
        self.num_requests = 4
        self.inferred_request = [0] * self.num_requests
        self.heap_request = []
        self.inferred_cnt = 0
        self.plugin = IEPlugin(device="MYRIAD")
        self.net = IENetwork(model=self.model_xml, weights=self.model_bin)
        self.input_blob = next(iter(self.net.inputs))
        self.exec_net = self.plugin.load(network=self.net, num_requests=self.num_requests)
        self.results = results
        self.camera_mode = camera_mode
        self.number_of_ncs = number_of_ncs
        if self.camera_mode == 0:
            self.skip_frame = skpfrm
        else:
            self.skip_frame = 0
        self.roop_frame = 0
        self.vidfps = vidfps 
開發者ID:PINTO0309,項目名稱:MobileNet-SSD-RealSense,代碼行數:26,代碼來源:MultiStickSSDwithRealSense_OpenVINO_NCS2.py

示例6: __init__

# 需要導入模塊: from openvino import inference_engine [as 別名]
# 或者: from openvino.inference_engine import IEPlugin [as 別名]
def __init__(self, devid, frameBuffer, results, camera_width, camera_height, number_of_ncs):
        self.devid = devid
        self.frameBuffer = frameBuffer
        self.model_xml = "./lrmodel/MobileNetSSD/MobileNetSSD_deploy.xml"
        self.model_bin = "./lrmodel/MobileNetSSD/MobileNetSSD_deploy.bin"
        self.camera_width = camera_width
        self.camera_height = camera_height
        self.num_requests = 4
        self.inferred_request = [0] * self.num_requests
        self.heap_request = []
        self.inferred_cnt = 0
        self.plugin = IEPlugin(device="MYRIAD")
        self.net = IENetwork(model=self.model_xml, weights=self.model_bin)
        self.input_blob = next(iter(self.net.inputs))
        self.exec_net = self.plugin.load(network=self.net, num_requests=self.num_requests)
        self.results = results
        self.number_of_ncs = number_of_ncs 
開發者ID:PINTO0309,項目名稱:MobileNet-SSD-RealSense,代碼行數:19,代碼來源:MultiStickSSDwithPiCamera_OpenVINO_NCS2.py

示例7: __init__

# 需要導入模塊: from openvino import inference_engine [as 別名]
# 或者: from openvino.inference_engine import IEPlugin [as 別名]
def __init__(self, devid, model_path, number_of_ncs):
        global g_plugin
        global g_inferred_request
        global g_heap_request
        global g_inferred_cnt
        global g_number_of_allocated_ncs

        self.devid = devid
        if number_of_ncs   == 0:
            self.num_requests = 4
        elif number_of_ncs == 1:
            self.num_requests = 4
        elif number_of_ncs == 2:
            self.num_requests = 2
        elif number_of_ncs >= 3:
            self.num_requests = 1

        print("g_number_of_allocated_ncs =", g_number_of_allocated_ncs, "number_of_ncs =", number_of_ncs)

        if g_number_of_allocated_ncs < 1:
            self.plugin = IEPlugin(device="MYRIAD")
            self.inferred_request = [0] * self.num_requests
            self.heap_request = []
            self.inferred_cnt = 0
            g_plugin = self.plugin
            g_inferred_request = self.inferred_request
            g_heap_request = self.heap_request
            g_inferred_cnt = self.inferred_cnt
            g_number_of_allocated_ncs += 1
        else:
            self.plugin = g_plugin
            self.inferred_request = g_inferred_request
            self.heap_request = g_heap_request
            self.inferred_cnt = g_inferred_cnt

        self.model_xml = model_path + ".xml"
        self.model_bin = model_path + ".bin"
        self.net = IENetwork(model=self.model_xml, weights=self.model_bin)
        self.input_blob = next(iter(self.net.inputs))
        self.exec_net = self.plugin.load(network=self.net, num_requests=self.num_requests) 
開發者ID:PINTO0309,項目名稱:OpenVINO-EmotionRecognition,代碼行數:42,代碼來源:main.py

示例8: __init__

# 需要導入模塊: from openvino import inference_engine [as 別名]
# 或者: from openvino.inference_engine import IEPlugin [as 別名]
def __init__(self, devid, device, model_xml, frameBuffer, results, camera_width, camera_height, number_of_ncs, vidfps, nPoints, w, h, new_w, new_h):
        self.devid = devid
        self.frameBuffer = frameBuffer
        self.model_xml = model_xml
        self.model_bin = os.path.splitext(model_xml)[0] + ".bin"
        self.camera_width = camera_width
        self.camera_height = camera_height
        self.threshold = 0.1
        self.nPoints = nPoints
        self.num_requests = 4
        self.inferred_request = [0] * self.num_requests
        self.heap_request = []
        self.inferred_cnt = 0
        self.plugin = IEPlugin(device=device)
        if "CPU" == device:
            if platform.processor() == "x86_64":
                self.plugin.add_cpu_extension("lib/libcpu_extension.so")
        self.net = IENetwork(model=self.model_xml, weights=self.model_bin)
        self.input_blob = next(iter(self.net.inputs))
        self.exec_net = self.plugin.load(network=self.net, num_requests=self.num_requests)
        self.results = results
        self.number_of_ncs = number_of_ncs
        self.predict_async_time = 250
        self.skip_frame = 0
        self.roop_frame = 0
        self.vidfps = vidfps
        self.w = w #432
        self.h = h #368
        self.new_w = new_w
        self.new_h = new_h 
開發者ID:PINTO0309,項目名稱:MobileNetV2-PoseEstimation,代碼行數:32,代碼來源:openvino-usbcamera-cpu-ncs2-async.py

示例9: main

# 需要導入模塊: from openvino import inference_engine [as 別名]
# 或者: from openvino.inference_engine import IEPlugin [as 別名]
def main():
    ARGS = parse_args().parse_args()

    ####################### 1. Setup Plugin and Network #######################
    # Select the myriad plugin and IRs to be used
    plugin = IEPlugin(device='MYRIAD')
    net = IENetwork(model = ARGS.ir, weights = ARGS.ir[:-3] + 'bin')

    # Set up the input and output blobs
    input_blob = next(iter(net.inputs))
    output_blob = next(iter(net.outputs))

    # Load the network and get the network shape information
    exec_net = plugin.load(network = net)
    input_shape = tuple(net.inputs[input_blob].shape)
    output_shape = net.outputs[output_blob].shape
    display_info(ARGS, input_shape, output_shape)
    # Prepare Categories for age and gender networks
    with open(ARGS.labels) as labels_file:
	    label_list = labels_file.read().splitlines()
	
    ####################### 2. Image Preprocessing #######################
    # Read in the image.
    img = cv2.imread(ARGS.image)
    img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    # Image preprocessing
    img = cv2.resize(img, NETWORK_DIM)
    img = img.astype(numpy.float32)
    img[:] = ((img[:]) * (1.0 / 255.0))
    
    img = img.reshape(input_shape)

    ####################### 3. Run the inference #######################
    res = exec_net.infer({input_blob: img})
    
    ####################### 4. Process and print the results #######################
    top_ind = numpy.argsort(res[output_blob], axis=1)[0, -ARGS.number_top:][::-1]
    print(YELLOW + '\n **********' + NOCOLOR + '  Results  ' + YELLOW + '***********' + NOCOLOR)
    for k, i in enumerate(top_ind):
        print('Prediction is ' + YELLOW + label_list[int(i)] + NOCOLOR + " with a confidence of " + YELLOW + "%3.1f%%." % (100*res[output_blob][0, i]) + NOCOLOR)
    print('') 
開發者ID:movidius,項目名稱:ncappzoo,代碼行數:43,代碼來源:mnist.py

示例10: _do_ncs_initialize

# 需要導入模塊: from openvino import inference_engine [as 別名]
# 或者: from openvino.inference_engine import IEPlugin [as 別名]
def _do_ncs_initialize(self):
        """Create and opens the Neural Compute device and create a MnistProcessor."""

        file_folder = os.path.dirname(os.path.realpath(__file__))
        graph_filename = file_folder + '/mnist_inference'
        
        self._plugin = IEPlugin(device="MYRIAD")
        # Create processor object for this network
        self._net_processor = MnistProcessor(graph_filename, self._plugin) 
開發者ID:movidius,項目名稱:ncappzoo,代碼行數:11,代碼來源:mnist_calc.py

示例11: inference

# 需要導入模塊: from openvino import inference_engine [as 別名]
# 或者: from openvino.inference_engine import IEPlugin [as 別名]
def inference(args, model_xml, model_bin, inputs, outputs):
    from openvino.inference_engine import IENetwork
    from openvino.inference_engine import IEPlugin
    plugin = IEPlugin(device=args.device, plugin_dirs=args.plugin_dir)
    if args.cpu_extension and 'CPU' in args.device:
        plugin.add_cpu_extension(args.cpu_extension)
    log.info('Loading network files:\n\t{}\n\t{}'.format(model_xml, model_bin))
    net = IENetwork(model=model_xml, weights=model_bin)

    if plugin.device == 'CPU':
        supported_layers = plugin.get_supported_layers(net)
        not_supported_layers = [l for l in net.layers.keys() if
                                l not in supported_layers]
        if not_supported_layers:
            log.error('Folowing layers are not supported by the plugin for '
                      'specified device {}:\n {}'.format(
                          plugin.device, ', '.join(not_supported_layers)))
            log.error('Please try to specify cpu extensions library path in '
                      'sample\'s command line parameters using '
                      '--cpu-extension command line argument')
            sys.exis(1)

    assert len(net.inputs) == len(inputs)
    ie_inputs = {}
    for item in inputs:
        assert item[0] in set(net.inputs.keys())
        ie_inputs[item[0]] = item[1]

    log.info('Loading model to the plugin')
    exec_net = plugin.load(network=net)

    res = exec_net.infer(inputs=ie_inputs)

    assert len(res) == len(outputs)
    for name, output in outputs:
        assert name in res
        actual_output = res[name]
        np.testing.assert_allclose(output, actual_output, rtol=1e-3, atol=1e-4)
        log.info('{}: OK'.format(name))
    log.info('ALL OK')

    def compute():
        exec_net.infer(inputs=ie_inputs)

    return run_onnx_util.run_benchmark(compute, args.iterations) 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:47,代碼來源:run_onnx_dldt.py

示例12: main

# 需要導入模塊: from openvino import inference_engine [as 別名]
# 或者: from openvino.inference_engine import IEPlugin [as 別名]
def main(path_to_objxml, path_to_objbin, dev, ext, input, labels_map=None):
    # Load network
    obj_net = IENetwork(model=path_to_objxml, weights=path_to_objbin)
    log.info("Loaded network")
    input_layer = next(iter(obj_net.inputs))
    output_layer = next(iter(obj_net.outputs))

    # Pre-process image
    n, c, h, w = obj_net.inputs[input_layer].shape
    obj_frame = cv2.imread(input)
    obj_in_frame = cv2.resize(obj_frame, (w, h))
    obj_in_frame = obj_in_frame.transpose((2, 0, 1))
    obj_in_frame = obj_in_frame.reshape((n, c, h, w))
    log.info("Pre-processed image")

    obj_plugin = IEPlugin(device=dev)
    if dev == 'CPU':
        obj_plugin.add_cpu_extension(ext)
    obj_exec_net = obj_plugin.load(network=obj_net, num_requests=1)
    log.info("Loaded network into plugin")

    # Do inference
    obj_res = obj_exec_net.infer({input_layer: obj_in_frame})
    log.info("Inference successful!")
    obj_det = obj_res[output_layer]

    initial_w = obj_frame.shape[1]
    initial_h = obj_frame.shape[0]
    for obj in obj_det[0][0]:
        # Draw only objects when probability more than specified threshold
        if obj[2] > 0.5:
            xmin = int(obj[3] * initial_w)
            ymin = int(obj[4] * initial_h)
            xmax = int(obj[5] * initial_w)
            ymax = int(obj[6] * initial_h)
            class_id = int(obj[1])

            # Draw box and label\class_id
            color = (min(class_id * 12.5, 255), min(class_id * 7, 255), min(class_id * 5, 255))
            det_label = labels_map[class_id - 1] if labels_map else str(class_id)
            cv2.rectangle(obj_frame, (xmin, ymin), (xmax, ymax), color, thickness=16)
            label_and_prob = det_label + ", " + str(obj[2] * 100) + "%"
            log.info('Detection: ' + label_and_prob)
            #cv2.putText(obj_frame, label_and_prob, (xmin, ymin - 7), cv2.FONT_HERSHEY_COMPLEX, 0.6, color, 1)

    log.info("Hit q to close the window")

    # Resizing to maintainable window
    inHeight = 368
    aspect_ratio = initial_w / initial_h
    inWidth = int(((aspect_ratio*inHeight)*8)//8)
    obj_frame = cv2.resize(obj_frame, (inWidth, inHeight))

    while True:
        cv2.imshow('Detections', obj_frame)
        key = cv2.waitKey(1)
        if (key & 0xFF) == ord('q'):
            break

    cv2.destroyAllWindows() 
開發者ID:movidius,項目名稱:ncappzoo,代碼行數:62,代碼來源:ssd_inception_v2_food.py

示例13: main_IE_infer

# 需要導入模塊: from openvino import inference_engine [as 別名]
# 或者: from openvino.inference_engine import IEPlugin [as 別名]
def main_IE_infer():


    image = cv2.imread('in.jpg')
    image_width = np.size(image,1)
    image_height = np.size(image,0)


    model_xml = "models/frozen_yolo_v3.xml"
    model_bin = "models/frozen_yolo_v3.bin"


    time.sleep(1)

    plugin = IEPlugin("MYRIAD")
    net = IENetwork(model=model_xml, weights=model_bin)
    input_blob = next(iter(net.inputs))
    exec_net = plugin.load(network=net)

    prepimg = cv2.resize(image, (m_input_size, m_input_size))
    prepimg = prepimg[np.newaxis, :, :, :]     # Batch size axis add
    prepimg = prepimg.transpose((0, 3, 1, 2))  # NHWC to NCHW
    outputs = exec_net.infer(inputs={input_blob: prepimg})

    objects = []

    for output in outputs.values():
        objects = ParseYOLOV3Output(output, m_input_size, m_input_size, image_height, image_width, 0.7, objects)

    # Filtering overlapping boxes
    objlen = len(objects)
    for i in range(objlen):
        if (objects[i].confidence == 0.0):
            continue
        for j in range(i + 1, objlen):
            if (IntersectionOverUnion(objects[i], objects[j]) >= 0.4):
                objects[j].confidence = 0
        
    # Drawing boxes
    for obj in objects:
        if obj.confidence < 0.2:
            continue
        label = obj.class_id
        confidence = obj.confidence
        if confidence > 0.2:
            label_text = LABELS[label] + " (" + "{:.1f}".format(confidence * 100) + "%)"
            cv2.rectangle(image, (obj.xmin, obj.ymin), (obj.xmax, obj.ymax), box_color, box_thickness)
            cv2.rectangle(image, (obj.xmin-1, obj.ymin-1),(obj.xmin+70, obj.ymin-12), (0,0,0), -1)
            cv2.putText(image, label_text, (obj.xmin, obj.ymin - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.3, label_text_color, 1)

    while cv2.waitKey(1) < 0:
        cv2.imshow("Result", image)

        if cv2.waitKey(1)&0xFF == ord('q'):
            break

    cv2.imwrite('out.png', image) 
開發者ID:leswright1977,項目名稱:RPi3_NCS2,代碼行數:59,代碼來源:yolo_images_test.py


注:本文中的openvino.inference_engine.IEPlugin方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。