本文整理匯總了Python中openvino.inference_engine.IENetwork方法的典型用法代碼示例。如果您正苦於以下問題:Python inference_engine.IENetwork方法的具體用法?Python inference_engine.IENetwork怎麽用?Python inference_engine.IENetwork使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類openvino.inference_engine
的用法示例。
在下文中一共展示了inference_engine.IENetwork方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: from openvino import inference_engine [as 別名]
# 或者: from openvino.inference_engine import IENetwork [as 別名]
def __init__(self, devid, frameBuffer, results, camera_width, camera_height, number_of_ncs, vidfps):
self.devid = devid
self.frameBuffer = frameBuffer
self.model_xml = "./lrmodels/YoloV3/FP16/frozen_yolo_v3.xml"
self.model_bin = "./lrmodels/YoloV3/FP16/frozen_yolo_v3.bin"
self.camera_width = camera_width
self.camera_height = camera_height
self.m_input_size = 416
self.threshould = 0.7
self.num_requests = 4
self.inferred_request = [0] * self.num_requests
self.heap_request = []
self.inferred_cnt = 0
self.plugin = IEPlugin(device="MYRIAD")
self.net = IENetwork(model=self.model_xml, weights=self.model_bin)
self.input_blob = next(iter(self.net.inputs))
self.exec_net = self.plugin.load(network=self.net, num_requests=self.num_requests)
self.results = results
self.number_of_ncs = number_of_ncs
self.predict_async_time = 800
self.skip_frame = 0
self.roop_frame = 0
self.vidfps = vidfps
self.new_w = int(camera_width * self.m_input_size/camera_width)
self.new_h = int(camera_height * self.m_input_size/camera_height)
示例2: __init__
# 需要導入模塊: from openvino import inference_engine [as 別名]
# 或者: from openvino.inference_engine import IENetwork [as 別名]
def __init__(self, devid, frameBuffer, results, camera_width, camera_height, number_of_ncs, vidfps):
self.devid = devid
self.frameBuffer = frameBuffer
self.model_xml = "./lrmodels/tiny-YoloV3/FP16/frozen_tiny_yolo_v3.xml"
self.model_bin = "./lrmodels/tiny-YoloV3/FP16/frozen_tiny_yolo_v3.bin"
self.camera_width = camera_width
self.camera_height = camera_height
self.m_input_size = 416
self.threshould = 0.4
self.num_requests = 4
self.inferred_request = [0] * self.num_requests
self.heap_request = []
self.inferred_cnt = 0
self.plugin = IEPlugin(device="MYRIAD")
self.net = IENetwork(model=self.model_xml, weights=self.model_bin)
self.input_blob = next(iter(self.net.inputs))
self.exec_net = self.plugin.load(network=self.net, num_requests=self.num_requests)
self.results = results
self.number_of_ncs = number_of_ncs
self.predict_async_time = 800
self.skip_frame = 0
self.roop_frame = 0
self.vidfps = vidfps
self.new_w = int(camera_width * self.m_input_size/camera_width)
self.new_h = int(camera_height * self.m_input_size/camera_height)
示例3: __init__
# 需要導入模塊: from openvino import inference_engine [as 別名]
# 或者: from openvino.inference_engine import IENetwork [as 別名]
def __init__(self, gn_ir: str, ie: IECore, device: str):
self._ie = ie
try:
self._gn_labels = np.loadtxt(googlenet_processor.LABELS_FILE_NAME, str, delimiter='\t')
for label_index in range(0, len(self._gn_labels)):
temp = self._gn_labels[label_index].split(',')[0].split(' ', 1)[1]
self._gn_labels[label_index] = temp
except:
print('\n\n')
print('Error - could not read labels from: ' + googlenet_processor.LABELS_FILE_NAME)
print('\n\n')
raise
# Set up the network
self._gn_net = IENetwork(model = gn_ir, weights = gn_ir[:-3] + 'bin')
# Set up the input and output blobs
self._gn_input_blob = next(iter(self._gn_net.inputs))
self._gn_output_blob = next(iter(self._gn_net.outputs))
self._gn_input_shape = self._gn_net.inputs[self._gn_input_blob].shape
self._gn_output_shape = self._gn_net.outputs[self._gn_output_blob].shape
# Load the network
self._gn_exec_net = ie.load_network(network = self._gn_net, device_name = device)
# Get the input shapes
self._gn_n, self._gn_c, self._gn_h, self._gn_w = self._gn_input_shape
示例4: classify_frame
# 需要導入模塊: from openvino import inference_engine [as 別名]
# 或者: from openvino.inference_engine import IENetwork [as 別名]
def classify_frame(inputQueue, outputQueue):
plugin = IEPlugin("MYRIAD")
net = IENetwork(model=model_xml, weights=model_bin)
input_blob = next(iter(net.inputs))
exec_net = plugin.load(network=net)
# keep looping
while True:
# check to see if there is a frame in our input queue
if not inputQueue.empty():
# grab the frame from the input queue, resize it, and
# construct a blob from it
image = inputQueue.get()
prepimg = cv2.resize(image, (416, 416))
prepimg = prepimg[np.newaxis, :, :, :] # Batch size axis add
prepimg = prepimg.transpose((0, 3, 1, 2)) # NHWC to NCHW
outputs = exec_net.infer(inputs={input_blob: prepimg})
# write the detections to the output queue
outputQueue.put(outputs)
# initialize the input queue (frames), output queue (out),
# and the list of actual detections returned by the child process
示例5: __init__
# 需要導入模塊: from openvino import inference_engine [as 別名]
# 或者: from openvino.inference_engine import IENetwork [as 別名]
def __init__(self, devid, frameBuffer, results, camera_mode, camera_width, camera_height, number_of_ncs, vidfps, skpfrm):
self.devid = devid
self.frameBuffer = frameBuffer
self.model_xml = "./lrmodel/MobileNetSSD/MobileNetSSD_deploy.xml"
self.model_bin = "./lrmodel/MobileNetSSD/MobileNetSSD_deploy.bin"
self.camera_width = camera_width
self.camera_height = camera_height
self.num_requests = 4
self.inferred_request = [0] * self.num_requests
self.heap_request = []
self.inferred_cnt = 0
self.plugin = IEPlugin(device="MYRIAD")
self.net = IENetwork(model=self.model_xml, weights=self.model_bin)
self.input_blob = next(iter(self.net.inputs))
self.exec_net = self.plugin.load(network=self.net, num_requests=self.num_requests)
self.results = results
self.camera_mode = camera_mode
self.number_of_ncs = number_of_ncs
if self.camera_mode == 0:
self.skip_frame = skpfrm
else:
self.skip_frame = 0
self.roop_frame = 0
self.vidfps = vidfps
開發者ID:PINTO0309,項目名稱:MobileNet-SSD-RealSense,代碼行數:26,代碼來源:MultiStickSSDwithRealSense_OpenVINO_NCS2.py
示例6: __init__
# 需要導入模塊: from openvino import inference_engine [as 別名]
# 或者: from openvino.inference_engine import IENetwork [as 別名]
def __init__(self, devid, frameBuffer, results, camera_width, camera_height, number_of_ncs):
self.devid = devid
self.frameBuffer = frameBuffer
self.model_xml = "./lrmodel/MobileNetSSD/MobileNetSSD_deploy.xml"
self.model_bin = "./lrmodel/MobileNetSSD/MobileNetSSD_deploy.bin"
self.camera_width = camera_width
self.camera_height = camera_height
self.num_requests = 4
self.inferred_request = [0] * self.num_requests
self.heap_request = []
self.inferred_cnt = 0
self.plugin = IEPlugin(device="MYRIAD")
self.net = IENetwork(model=self.model_xml, weights=self.model_bin)
self.input_blob = next(iter(self.net.inputs))
self.exec_net = self.plugin.load(network=self.net, num_requests=self.num_requests)
self.results = results
self.number_of_ncs = number_of_ncs
開發者ID:PINTO0309,項目名稱:MobileNet-SSD-RealSense,代碼行數:19,代碼來源:MultiStickSSDwithPiCamera_OpenVINO_NCS2.py
示例7: __init__
# 需要導入模塊: from openvino import inference_engine [as 別名]
# 或者: from openvino.inference_engine import IENetwork [as 別名]
def __init__(self, devid, model_path, number_of_ncs):
global g_plugin
global g_inferred_request
global g_heap_request
global g_inferred_cnt
global g_number_of_allocated_ncs
self.devid = devid
if number_of_ncs == 0:
self.num_requests = 4
elif number_of_ncs == 1:
self.num_requests = 4
elif number_of_ncs == 2:
self.num_requests = 2
elif number_of_ncs >= 3:
self.num_requests = 1
print("g_number_of_allocated_ncs =", g_number_of_allocated_ncs, "number_of_ncs =", number_of_ncs)
if g_number_of_allocated_ncs < 1:
self.plugin = IEPlugin(device="MYRIAD")
self.inferred_request = [0] * self.num_requests
self.heap_request = []
self.inferred_cnt = 0
g_plugin = self.plugin
g_inferred_request = self.inferred_request
g_heap_request = self.heap_request
g_inferred_cnt = self.inferred_cnt
g_number_of_allocated_ncs += 1
else:
self.plugin = g_plugin
self.inferred_request = g_inferred_request
self.heap_request = g_heap_request
self.inferred_cnt = g_inferred_cnt
self.model_xml = model_path + ".xml"
self.model_bin = model_path + ".bin"
self.net = IENetwork(model=self.model_xml, weights=self.model_bin)
self.input_blob = next(iter(self.net.inputs))
self.exec_net = self.plugin.load(network=self.net, num_requests=self.num_requests)
示例8: __init__
# 需要導入模塊: from openvino import inference_engine [as 別名]
# 或者: from openvino.inference_engine import IENetwork [as 別名]
def __init__(self, devid, device, model_xml, frameBuffer, results, camera_width, camera_height, number_of_ncs, vidfps, nPoints, w, h, new_w, new_h):
self.devid = devid
self.frameBuffer = frameBuffer
self.model_xml = model_xml
self.model_bin = os.path.splitext(model_xml)[0] + ".bin"
self.camera_width = camera_width
self.camera_height = camera_height
self.threshold = 0.1
self.nPoints = nPoints
self.num_requests = 4
self.inferred_request = [0] * self.num_requests
self.heap_request = []
self.inferred_cnt = 0
self.plugin = IEPlugin(device=device)
if "CPU" == device:
if platform.processor() == "x86_64":
self.plugin.add_cpu_extension("lib/libcpu_extension.so")
self.net = IENetwork(model=self.model_xml, weights=self.model_bin)
self.input_blob = next(iter(self.net.inputs))
self.exec_net = self.plugin.load(network=self.net, num_requests=self.num_requests)
self.results = results
self.number_of_ncs = number_of_ncs
self.predict_async_time = 250
self.skip_frame = 0
self.roop_frame = 0
self.vidfps = vidfps
self.w = w #432
self.h = h #368
self.new_w = new_w
self.new_h = new_h
示例9: __init__
# 需要導入模塊: from openvino import inference_engine [as 別名]
# 或者: from openvino.inference_engine import IENetwork [as 別名]
def __init__(self, net_model_xml_path, device):
self.device = device
net_model_bin_path = os.path.splitext(net_model_xml_path)[0] + '.bin'
self.net = IENetwork(model=net_model_xml_path, weights=net_model_bin_path)
required_input_key = {'data'}
assert required_input_key == set(self.net.inputs.keys()), \
'Demo supports only topologies with the following input key: {}'.format(', '.join(required_input_key))
required_output_keys = {'features', 'heatmaps', 'pafs'}
assert required_output_keys.issubset(self.net.outputs.keys()), \
'Demo supports only topologies with the following output keys: {}'.format(', '.join(required_output_keys))
self.ie = IECore()
self.exec_net = self.ie.load_network(network=self.net, num_requests=1, device_name=device)
開發者ID:Daniil-Osokin,項目名稱:lightweight-human-pose-estimation-3d-demo.pytorch,代碼行數:16,代碼來源:inference_engine_openvino.py
示例10: __init__
# 需要導入模塊: from openvino import inference_engine [as 別名]
# 或者: from openvino.inference_engine import IENetwork [as 別名]
def __init__(self, ie, # type: IECore
net, # type: IENetwork
device # type: str
):
""" Constructor for object detector processor.
Does 3 main things:
1. Get input and output layer names for the model.
2. Gather input and output shapes (n,c,h,w) from the model input/output and input/output blobs.
3. Create the ExecutableNetwork object by specifying the IENetwork object and device name (in this case MYRIAD). """
pass
示例11: main
# 需要導入模塊: from openvino import inference_engine [as 別名]
# 或者: from openvino.inference_engine import IENetwork [as 別名]
def main():
global network_input_h, network_input_w
ie = IECore()
net = IENetwork(model = ir, weights = ir[:-3] + 'bin')
input_blob = next(iter(net.inputs))
output_blob = next(iter(net.outputs))
exec_net = ie.load_network(network = net, device_name = DEVICE)
n, c, network_input_h, network_input_w = net.inputs[input_blob].shape
# Read the image
validated_image = cv2.imread(validated_image_filename)
if validated_image is None:
print("Cannot read image.")
exit(1)
# Preprocess the image
preprocessed_image = preprocess_image(validated_image)
# Run the inference
valid_output = run_inference(preprocessed_image, exec_net, input_blob, output_blob)
# Get list of all the .jpg files in the image directory
input_image_filename_list = os.listdir(TEST_IMAGES_DIR)
input_image_filename_list = [i for i in input_image_filename_list if i.endswith('.png')]
if (len(input_image_filename_list) < 1):
# no images to show
print('No .png files found')
return 1
else:
print("images: " + str(input_image_filename_list) + '\n')
# Run the inferences and make comparisons
run_images(valid_output, validated_image_filename, exec_net, input_image_filename_list, input_blob, output_blob)
print(" Finished.\n")
# main entry point for program. we'll call main() to do what needs to be done.
示例12: main
# 需要導入模塊: from openvino import inference_engine [as 別名]
# 或者: from openvino.inference_engine import IENetwork [as 別名]
def main():
ARGS = parse_args().parse_args()
####################### 1. Setup Plugin and Network #######################
# Select the myriad plugin and IRs to be used
plugin = IEPlugin(device='MYRIAD')
net = IENetwork(model = ARGS.ir, weights = ARGS.ir[:-3] + 'bin')
# Set up the input and output blobs
input_blob = next(iter(net.inputs))
output_blob = next(iter(net.outputs))
# Load the network and get the network shape information
exec_net = plugin.load(network = net)
input_shape = tuple(net.inputs[input_blob].shape)
output_shape = net.outputs[output_blob].shape
display_info(ARGS, input_shape, output_shape)
# Prepare Categories for age and gender networks
with open(ARGS.labels) as labels_file:
label_list = labels_file.read().splitlines()
####################### 2. Image Preprocessing #######################
# Read in the image.
img = cv2.imread(ARGS.image)
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Image preprocessing
img = cv2.resize(img, NETWORK_DIM)
img = img.astype(numpy.float32)
img[:] = ((img[:]) * (1.0 / 255.0))
img = img.reshape(input_shape)
####################### 3. Run the inference #######################
res = exec_net.infer({input_blob: img})
####################### 4. Process and print the results #######################
top_ind = numpy.argsort(res[output_blob], axis=1)[0, -ARGS.number_top:][::-1]
print(YELLOW + '\n **********' + NOCOLOR + ' Results ' + YELLOW + '***********' + NOCOLOR)
for k, i in enumerate(top_ind):
print('Prediction is ' + YELLOW + label_list[int(i)] + NOCOLOR + " with a confidence of " + YELLOW + "%3.1f%%." % (100*res[output_blob][0, i]) + NOCOLOR)
print('')
示例13: __init__
# 需要導入模塊: from openvino import inference_engine [as 別名]
# 或者: from openvino.inference_engine import IENetwork [as 別名]
def __init__(self, network_graph_filename, plugin=None,
prob_thresh=0.0, classification_mask=None):
"""Initialize an instance of the class.
:param network_graph_filename: the file path and name of the graph file created by the OpenVINO compiler
:param nc_device: an open neural compute device object to use for inferences for this graph file
:param prob_thresh: the probability threshold (between 0.0 and 1.0)... results below this threshold will be
excluded
:param classification_mask: a list of 0/1 values, one for each classification label in the
_classification_mask list... if the value is 0 then the corresponding classification won't be reported.
:return : None
"""
# Load graph from disk and allocate graph to device
try:
self._net = IENetwork(model=network_graph_filename + ".xml", weights=network_graph_filename + ".bin")
self._input_blob = next(iter(self._net.inputs))
self._output_blob = next(iter(self._net.outputs))
self._exec_net = plugin.load(network=self._net)
#print("network shape: ",self._net.inputs[self._input_blob].shape)
self._n, self._input_total_size = self._net.inputs[self._input_blob].shape
del self._net
except IOError as e:
print('Error - could not load neural network graph file: ' + network_graph_filename)
raise e
# If no mask was passed then create one to accept all classifications
self._classification_mask = classification_mask if classification_mask else [1] * 10
self._probability_threshold = prob_thresh
self._end_flag = True
示例14: __init__
# 需要導入模塊: from openvino import inference_engine [as 別名]
# 或者: from openvino.inference_engine import IENetwork [as 別名]
def __init__(self, ty_ir: str, ie: IECore, device: str):
self._ie = ie
try:
self._ty_labels = np.loadtxt(tiny_yolo_processor.LABELS_FILE_NAME, str, delimiter='\t')
with open(tiny_yolo_processor.LABELS_FILE_NAME) as labels_file:
self._ty_labels = labels_file.read().splitlines()
except:
print('\n\n')
print('Error - could not read labels from: ' + tiny_yolo_processor.LABELS_FILE_NAME)
print('\n\n')
raise
# Create the network object
self._ty_net = IENetwork(model = ty_ir, weights = ty_ir[:-3] + 'bin')
# Set up the input and output blobs
self._ty_input_blob = next(iter(self._ty_net.inputs))
self._ty_output_blob = next(iter(self._ty_net.outputs))
self._ty_input_shape = self._ty_net.inputs[self._ty_input_blob].shape
self._ty_output_shape = self._ty_net.outputs[self._ty_output_blob].shape
# Load the network
self._ty_exec_net = ie.load_network(network = self._ty_net, device_name = device)
# Get the input shape
self._ty_n, self._ty_c, self.ty_h, self.ty_w = self._ty_input_shape
# Performs the image preprocessing and makes an inference
# Returns a list of detected object names, four bounding box points, and the object score
示例15: create_ie_network
# 需要導入模塊: from openvino import inference_engine [as 別名]
# 或者: from openvino.inference_engine import IENetwork [as 別名]
def create_ie_network(model_xml, model_bin):
return ie.IENetwork(model_xml, model_bin)