本文整理匯總了Python中openface.AlignDlib方法的典型用法代碼示例。如果您正苦於以下問題:Python openface.AlignDlib方法的具體用法?Python openface.AlignDlib怎麽用?Python openface.AlignDlib使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類openface
的用法示例。
在下文中一共展示了openface.AlignDlib方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: align_face
# 需要導入模塊: import openface [as 別名]
# 或者: from openface import AlignDlib [as 別名]
def align_face(img_path, save=False):
img_bgr = cv2.imread(img_path)
if img_bgr is None:
raise Exception("Unable to load image '%s'" % img_path)
# Convert to RGB
img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)
# Get bounding box
bbox = align.getLargestFaceBoundingBox(img_rgb)
if bbox is None:
raise Exception("Unable to find a face in '%s'" % img_path)
print "Align '%s'" % img_path
face = align.align(IMG_DIM, img_rgb, bbox,
landmarkIndices=openface.AlignDlib.OUTER_EYES_AND_NOSE)
if save:
print "Save to '%s'" % save
cv2.imwrite(save, face)
return face
示例2: _get_representation
# 需要導入模塊: import openface [as 別名]
# 或者: from openface import AlignDlib [as 別名]
def _get_representation(self, bgr_image):
"""
Gets the vector of a face in the image
:param bgr_image: The input image
:return: The vector representation
"""
rgb_image = cv2.cvtColor(bgr_image, cv2.COLOR_BGR2RGB)
bb = self._align.getLargestFaceBoundingBox(rgb_image)
if bb is None:
raise Exception("Unable to find a face in image")
aligned_face = self._align.align(96, rgb_image, bb, landmarkIndices=openface.AlignDlib.OUTER_EYES_AND_NOSE)
if aligned_face is None:
raise Exception("Unable to align face bb image")
return self._net.forward(aligned_face)
示例3: get_face_vector
# 需要導入模塊: import openface [as 別名]
# 或者: from openface import AlignDlib [as 別名]
def get_face_vector(rgbImg, align, net):
bbs = align.getAllFaceBoundingBoxes(rgbImg)
if len(bbs) == 0:
raise(Exception("Unable to find a face"))
elif len(bbs) > 1:
raise(Exception("Found more than one face"))
else:
print "Found exactly one face in image (no error)"
print('bbs', bbs)
alignedFace = align.align(
96,
rgbImg,
bbs[0],
landmarkIndices=openface.AlignDlib.OUTER_EYES_AND_NOSE)
if alignedFace is None:
raise("Unable to align image")
print('aligned face shape', alignedFace.shape)
rep = net.forward(alignedFace)
return rep
示例4: is_face_present
# 需要導入模塊: import openface [as 別名]
# 或者: from openface import AlignDlib [as 別名]
def is_face_present(rgbImg, align, net, knn):
# get face vectors
bbs = align.getAllFaceBoundingBoxes(rgbImg)
face_vectors = []
for bb in bbs:
alignedFace = align.align(
96,
rgbImg,
bb,
landmarkIndices=openface.AlignDlib.OUTER_EYES_AND_NOSE)
if alignedFace is None:
raise("Unable to align image")
rep = net.forward(alignedFace)
face_vectors.append(rep)
# classify the faces in the image
for face_vector in face_vectors:
face_prediction = int(knn.predict(face_vector)[0])
if( face_prediction == 0 ):
return True
return False
示例5: get_face
# 需要導入模塊: import openface [as 別名]
# 或者: from openface import AlignDlib [as 別名]
def get_face(filename):
# Create a HOG face detector using the built-in dlib class
predictor_model = "shape_predictor_68_face_landmarks.dat"
face_detector = dlib.get_frontal_face_detector()
face_pose_predictor = dlib.shape_predictor(predictor_model)
face_aligner = openface.AlignDlib(predictor_model)
win = dlib.image_window()
# Load the image into an array
image = io.imread(filename)
# Run the HOG face detector on the image data.
# The result will be the bounding boxes of the faces in our image.
detected_faces = face_detector(image, 1)
# Open a window on the desktop showing the image
win.set_image(image)
# Loop through each face we found in the image
for i, face_rect in enumerate(detected_faces):
# Detected faces are returned as an object with the coordinates
# of the top, left, right and bottom edges
face1 = image[face_rect.top():face_rect.bottom(), face_rect.left():face_rect.right()]
# Draw a box around each face we found
win.add_overlay(face_rect)
# Get the the face's pose
pose_landmarks = face_pose_predictor(image, face_rect)
alignedFace = face_aligner.align(534, image, face_rect, landmarkIndices=openface.AlignDlib.OUTER_EYES_AND_NOSE)
# Draw the face landmarks on the screen.
win.add_overlay(pose_landmarks)
return face1, alignedFace
#----------------------------------------------------------------------------------------
示例6: get_face
# 需要導入模塊: import openface [as 別名]
# 或者: from openface import AlignDlib [as 別名]
def get_face(filename):
image = io.imread(filename)
# Run the HOG face detector on the image data.
# The result will be the bounding boxes of the faces in our image.
detected_faces = face_detector(image, 1)
print("I found {} faces in the file {}".format(len(detected_faces), filename))
# Open a window on the desktop showing the image
win.set_image(image)
# Loop through each face we found in the image
for i, face_rect in enumerate(detected_faces):
# Detected faces are returned as an object with the coordinates
# of the top, left, right and bottom edges
print("- Face #{} found at Left: {} Top: {} Right: {} Bottom: {}".format(i, face_rect.left(), face_rect.top(), face_rect.right(), face_rect.bottom()))
face1 = image[face_rect.top():face_rect.bottom(), face_rect.left():face_rect.right()]
# Draw a box around each face we found
win.add_overlay(face_rect)
# Get the the face's pose
pose_landmarks = face_pose_predictor(image, face_rect)
alignedFace = face_aligner.align(256, image, face_rect, landmarkIndices=openface.AlignDlib.OUTER_EYES_AND_NOSE)
# Draw the face landmarks on the screen.
# win.add_overlay(pose_landmarks)
return alignedFace
示例7: __init__
# 需要導入模塊: import openface [as 別名]
# 或者: from openface import AlignDlib [as 別名]
def __init__(self, align_path, net_path):
# Init align and net
"""
Dlib / Openface Face recognizer
:param align_path: Dlib align path
:param net_path: Openface neural network path
"""
self._align = openface.AlignDlib(os.path.expanduser(align_path))
self._net = openface.TorchNeuralNet(os.path.expanduser(net_path), imgDim=96, cuda=False)
self._face_detector = dlib.get_frontal_face_detector()
self._trained_faces = []
示例8: getRep
# 需要導入模塊: import openface [as 別名]
# 或者: from openface import AlignDlib [as 別名]
def getRep(bgrImg, align=align, net=net):
rgbImg = cv2.cvtColor(bgrImg, cv2.COLOR_BGR2RGB)
bb = align.getLargestFaceBoundingBox(rgbImg)
if bb is None:
raise Exception("Unable to find a face")
alignedFace = align.align(96, rgbImg, bb, landmarkIndices=openface.AlignDlib.OUTER_EYES_AND_NOSE)
if alignedFace is None:
raise Exception("Unable to align image")
rep = net.forward(alignedFace)
return rep
示例9: getPeople
# 需要導入模塊: import openface [as 別名]
# 或者: from openface import AlignDlib [as 別名]
def getPeople(bgrImg, align=align, net=net):
faces = []
rgbImg = cv2.cvtColor(bgrImg, cv2.COLOR_BGR2RGB)
bb = align.getAllFaceBoundingBoxes(rgbImg)
if bb is None:
raise Exception("Unable to find a face")
for face in bb:
alignedFace = align.align(96, rgbImg, face, landmarkIndices=openface.AlignDlib.OUTER_EYES_AND_NOSE)
if alignedFace is None:
print("Unable to align image")
continue
if not alignedFace is None:
rep = net.forward(alignedFace)
best = 4
bestUid = "unknown"
for i in reps.keys():
if type(reps[i]) is not list:
reps[i] = [reps[i]]
for r in reps[i]:
d = rep - r
dot = np.dot(d,d)
if dot < best:
best = dot
bestUid = i
faces.append({
"face_rectangle": {
"left": face.left(),
"top": face.top(),
"width": face.width(),
"height": face.height()
},
"uid": bestUid,
"confidence": 1 - best/4,
"data": data_dict.get(bestUid)
})
return faces
示例10: head_detection_top
# 需要導入模塊: import openface [as 別名]
# 或者: from openface import AlignDlib [as 別名]
def head_detection_top(photos, dlibFacePredictor, f_head_annotate):
align = openface.AlignDlib(dlibFacePredictor)
head_total = 0
for photo in photos:
image = skimage.io.imread(photo.file_path)
head_index = 0
for head_id in photo.human_detections:
front_head = check_front_head(photo, image, head_id, align, head_index)
f_head_annotate.write(str(front_head) + '\n')
head_total += 1
head_index += 1
示例11: head_extraction_top
# 需要導入模塊: import openface [as 別名]
# 或者: from openface import AlignDlib [as 別名]
def head_extraction_top(photos, dlibFacePredictor, imgDim, head_dir):
align = openface.AlignDlib(dlibFacePredictor)
for photo in photos:
image = skimage.io.imread(photo.file_path)
head_index = 0
for head_id in photo.human_detections:
align_head(photo, image, head_id, align, head_index, imgDim, head_dir)
head_index += 1
示例12: align_head
# 需要導入模塊: import openface [as 別名]
# 或者: from openface import AlignDlib [as 別名]
def align_head(photo, image, head_id, align, head_index, imgDim, head_dir):
#crop head position
xmin = int(head_id.head_bbox[0])
ymin = int(head_id.head_bbox[1])
width = int(head_id.head_bbox[2])
height = int(head_id.head_bbox[3])
#crop to square/out of boundary
if xmin < 0:
x_left = 0
else:
x_left = xmin
if ymin < 0:
y_up = 0
else:
y_up = ymin
if (xmin+width) > image.shape[1]:
x_right = image.shape[1]
else:
x_right = xmin+width
if (ymin+height) > image.shape[0]:
y_down = image.shape[0]
else:
y_down = ymin+height
new_width = x_right - x_left
new_height = y_down - y_up
if new_width > new_height:
length = new_height
else:
length = new_width
new_x_left = (x_left+x_right)/2 - length/2
new_x_right = (x_left+x_right)/2 + length/2
new_y_up = (y_up+y_down)/2 - length/2
new_y_down = (y_up+y_down)/2 + length/2
if (new_y_up >= new_y_down) or (new_x_left >= new_x_right):
return
#save head image
if config.save_head_image == True:
head_image = image[new_y_up:new_y_down, new_x_left:new_x_right]
head_file = os.path.join(head_dir, photo.album_id + '_' + photo.photo_id + '_head_' + str(head_index) + '.jpg')
skimage.io.imsave(head_file, head_image)
#save aligned head
if config.save_aligned_head_image == True:
dlib_bbox = dlib.rectangle(left=new_x_left, top=new_y_up, right=new_x_right, bottom=new_y_down)
alignedFace = align.align(imgDim, image, dlib_bbox, landmarkIndices=openface.AlignDlib.INNER_EYES_AND_BOTTOM_LIP)
if image.ndim == 3:
alignedFace = cv2.cvtColor(alignedFace, cv2.COLOR_RGB2BGR)
align_head_file = os.path.join(head_dir, photo.album_id + '_' + photo.photo_id + '_aligned_head_' + str(head_index) + '.jpg')
cv2.imwrite(align_head_file, alignedFace)