本文整理匯總了Python中onnxruntime.SessionOptions方法的典型用法代碼示例。如果您正苦於以下問題:Python onnxruntime.SessionOptions方法的具體用法?Python onnxruntime.SessionOptions怎麽用?Python onnxruntime.SessionOptions使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類onnxruntime
的用法示例。
在下文中一共展示了onnxruntime.SessionOptions方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: load
# 需要導入模塊: import onnxruntime [as 別名]
# 或者: from onnxruntime import SessionOptions [as 別名]
def load(self, model_path, inputs=None, outputs=None):
"""Load model and find input/outputs from the model file."""
opt = rt.SessionOptions()
# enable level 3 optimizations
# FIXME: enable below once onnxruntime 0.5 is released
# opt.set_graph_optimization_level(3)
self.sess = rt.InferenceSession(model_path, opt)
# get input and output names
if not inputs:
self.inputs = [meta.name for meta in self.sess.get_inputs()]
else:
self.inputs = inputs
if not outputs:
self.outputs = [meta.name for meta in self.sess.get_outputs()]
else:
self.outputs = outputs
return self
示例2: load
# 需要導入模塊: import onnxruntime [as 別名]
# 或者: from onnxruntime import SessionOptions [as 別名]
def load(cls, load_dir, device, **kwargs):
import onnxruntime
sess_options = onnxruntime.SessionOptions()
# Set graph optimization level to ORT_ENABLE_EXTENDED to enable bert optimization.
sess_options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_EXTENDED
# Use OpenMP optimizations. Only useful for CPU, has little impact for GPUs.
sess_options.intra_op_num_threads = multiprocessing.cpu_count()
onnx_session = onnxruntime.InferenceSession(str(load_dir / "model.onnx"), sess_options)
# Prediction heads
_, ph_config_files = cls._get_prediction_head_files(load_dir, strict=False)
prediction_heads = []
ph_output_type = []
for config_file in ph_config_files:
# ONNX Model doesn't need have a separate neural network for PredictionHead. It only uses the
# instance methods of PredictionHead class, so, we load with the load_weights param as False.
head = PredictionHead.load(config_file, load_weights=False)
prediction_heads.append(head)
ph_output_type.append(head.ph_output_type)
with open(load_dir/"model_config.json") as f:
model_config = json.load(f)
language = model_config["language"]
return cls(onnx_session, prediction_heads, language, device)
示例3: __init__
# 需要導入模塊: import onnxruntime [as 別名]
# 或者: from onnxruntime import SessionOptions [as 別名]
def __init__(self, args):
self.profile = args.profile
self.options = onnxruntime.SessionOptions()
self.options.enable_profiling = args.profile
print("Loading ONNX model...")
self.quantized = args.quantized
if self.quantized:
model_path = "build/data/bert_tf_v1_1_large_fp32_384_v2/bert_large_v1_1_fake_quant.onnx"
else:
model_path = "build/data/bert_tf_v1_1_large_fp32_384_v2/model.onnx"
self.sess = onnxruntime.InferenceSession(model_path, self.options)
print("Constructing SUT...")
self.sut = lg.ConstructSUT(self.issue_queries, self.flush_queries, self.process_latencies)
print("Finished constructing SUT.")
self.qsl = get_squad_QSL()
示例4: __init__
# 需要導入模塊: import onnxruntime [as 別名]
# 或者: from onnxruntime import SessionOptions [as 別名]
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
sess_options = rt.SessionOptions()
self.model_dir = glob.glob(os.path.join(self.model_dir, '*.onnx'))[0]
# Set graph optimization level to ORT_ENABLE_EXTENDED to enable bert optimization.
sess_options.graph_optimization_level = rt.GraphOptimizationLevel.ORT_ENABLE_EXTENDED
# To enable model serialization and store the optimized graph to desired location.
sess_options.optimized_model_filepath = self.model_dir
self.session = rt.InferenceSession(self.model_dir, sess_options)
if 'albert' in self.model_dir:
self.tokenizer = AutoTokenizer.from_pretrained('albert-base-uncased')
else:
self.tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
示例5: _create_session_via_execution_providers_api
# 需要導入模塊: import onnxruntime [as 別名]
# 或者: from onnxruntime import SessionOptions [as 別名]
def _create_session_via_execution_providers_api(self, model):
session_options = onnx_rt.SessionOptions()
session = onnx_rt.InferenceSession(model, sess_options=session_options)
self.execution_providers = self.get_value_from_config('execution_providers')
available_providers = session.get_providers()
contains_all(available_providers, self.execution_providers)
session.set_providers(self.execution_providers)
return session
示例6: optimize_by_onnxruntime
# 需要導入模塊: import onnxruntime [as 別名]
# 或者: from onnxruntime import SessionOptions [as 別名]
def optimize_by_onnxruntime(onnx_model_path, use_gpu=False, optimized_model_path=None, opt_level=99):
"""
Use onnxruntime package to optimize model. It could support models exported by PyTorch.
Args:
onnx_model_path (str): th path of input onnx model.
use_gpu (bool): whether the optimized model is targeted to run in GPU.
optimized_model_path (str or None): the path of optimized model.
Returns:
optimized_model_path: the path of optimized model
"""
import onnxruntime
if use_gpu and 'CUDAExecutionProvider' not in onnxruntime.get_available_providers():
logger.error("There is no gpu for onnxruntime to do optimization.")
return onnx_model_path
sess_options = onnxruntime.SessionOptions()
if opt_level == 1:
sess_options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_BASIC
elif opt_level == 2:
sess_options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_EXTENDED
else:
assert opt_level == 99
sess_options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
if optimized_model_path is None:
path_prefix = onnx_model_path[:-5] #remove .onnx suffix
optimized_model_path = "{}_ort_{}.onnx".format(path_prefix, "gpu" if use_gpu else "cpu")
sess_options.optimized_model_filepath = optimized_model_path
if not use_gpu:
session = onnxruntime.InferenceSession(onnx_model_path, sess_options, providers=['CPUExecutionProvider'])
else:
session = onnxruntime.InferenceSession(onnx_model_path, sess_options)
assert 'CUDAExecutionProvider' in session.get_providers() # Make sure there is GPU
assert os.path.exists(optimized_model_path) and os.path.isfile(optimized_model_path)
logger.info("Save optimized model by onnxruntime to {}".format(optimized_model_path))
return optimized_model_path