當前位置: 首頁>>代碼示例>>Python>>正文


Python onnxruntime.InferenceSession方法代碼示例

本文整理匯總了Python中onnxruntime.InferenceSession方法的典型用法代碼示例。如果您正苦於以下問題:Python onnxruntime.InferenceSession方法的具體用法?Python onnxruntime.InferenceSession怎麽用?Python onnxruntime.InferenceSession使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在onnxruntime的用法示例。


在下文中一共展示了onnxruntime.InferenceSession方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: main

# 需要導入模塊: import onnxruntime [as 別名]
# 或者: from onnxruntime import InferenceSession [as 別名]
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--input_shape', help="caffe's caffemodel file path", nargs='+', default=(224,224))
    parser.add_argument('--img_path', help="test image path", type=str, default="./onnxmodel/airplane.jpg")
    parser.add_argument('--onnx_path', help="onnx model file path", type=str, default="./onnxmodel/resnet50.onnx")
    args = parser.parse_args()


    input_shape = [int(x) for x in args.input_shape] #模型輸入尺寸
    img_path = args.img_path
    onnx_path = args.onnx_path
    print("image path:",img_path)
    print("onnx model path:",onnx_path)

    data_input = process_image(img_path,input_shape)
    session = onnxruntime.InferenceSession(onnx_path)
    inname = [input.name for input in session.get_inputs()]
    outname = [output.name for output in session.get_outputs()]

    print("inputs name:",inname,"|| outputs name:",outname)
    data_output = session.run(outname, {inname[0]: data_input})

    output = data_output[0]
    print("Label predict: ", output.argmax()) 
開發者ID:htshinichi,項目名稱:caffe-onnx,代碼行數:26,代碼來源:test_resnet.py

示例2: test_kmeans

# 需要導入模塊: import onnxruntime [as 別名]
# 或者: from onnxruntime import InferenceSession [as 別名]
def test_kmeans(self):
        model = KMeans()
        X, y = make_regression(n_features=4, random_state=42)
        model.fit(X, y)
        initial_types = [('input', FloatTensorType((None, X.shape[1])))]
        with self.assertRaises(RuntimeError):
            convert_sklearn(model, initial_types=initial_types,
                            final_types=[('output4', None)])
        with self.assertRaises(RuntimeError):
            convert_sklearn(model, initial_types=initial_types,
                            final_types=[('dup1', None), ('dup1', None)],
                            target_opset=TARGET_OPSET)
        model_onnx = convert_sklearn(
            model, initial_types=initial_types,
            final_types=[('output4', None), ('output5', None)],
            target_opset=TARGET_OPSET)
        assert model_onnx is not None
        sess = InferenceSession(model_onnx.SerializeToString())
        assert sess.get_outputs()[0].name == 'output4'
        assert sess.get_outputs()[1].name == 'output5' 
開發者ID:onnx,項目名稱:sklearn-onnx,代碼行數:22,代碼來源:test_parsing_options.py

示例3: load

# 需要導入模塊: import onnxruntime [as 別名]
# 或者: from onnxruntime import InferenceSession [as 別名]
def load(cls, load_dir, device, **kwargs):
        import onnxruntime
        sess_options = onnxruntime.SessionOptions()
        # Set graph optimization level to ORT_ENABLE_EXTENDED to enable bert optimization.
        sess_options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_EXTENDED
        # Use OpenMP optimizations. Only useful for CPU, has little impact for GPUs.
        sess_options.intra_op_num_threads = multiprocessing.cpu_count()
        onnx_session = onnxruntime.InferenceSession(str(load_dir / "model.onnx"), sess_options)

        # Prediction heads
        _, ph_config_files = cls._get_prediction_head_files(load_dir, strict=False)
        prediction_heads = []
        ph_output_type = []
        for config_file in ph_config_files:
            # ONNX Model doesn't need have a separate neural network for PredictionHead. It only uses the
            # instance methods of PredictionHead class, so, we load with the load_weights param as False.
            head = PredictionHead.load(config_file, load_weights=False)
            prediction_heads.append(head)
            ph_output_type.append(head.ph_output_type)

        with open(load_dir/"model_config.json") as f:
            model_config = json.load(f)
            language = model_config["language"]

        return cls(onnx_session, prediction_heads, language, device) 
開發者ID:deepset-ai,項目名稱:FARM,代碼行數:27,代碼來源:adaptive_model.py

示例4: load

# 需要導入模塊: import onnxruntime [as 別名]
# 或者: from onnxruntime import InferenceSession [as 別名]
def load(self, model_path, inputs=None, outputs=None):
        """Load model and find input/outputs from the model file."""
        opt = rt.SessionOptions()
        # enable level 3 optimizations
        # FIXME: enable below once onnxruntime 0.5 is released
        # opt.set_graph_optimization_level(3)
        self.sess = rt.InferenceSession(model_path, opt)
        # get input and output names
        if not inputs:
            self.inputs = [meta.name for meta in self.sess.get_inputs()]
        else:
            self.inputs = inputs
        if not outputs:
            self.outputs = [meta.name for meta in self.sess.get_outputs()]
        else:
            self.outputs = outputs
        return self 
開發者ID:mlperf,項目名稱:inference,代碼行數:19,代碼來源:backend_onnxruntime.py

示例5: __init__

# 需要導入模塊: import onnxruntime [as 別名]
# 或者: from onnxruntime import InferenceSession [as 別名]
def __init__(self, args):
        self.profile = args.profile
        self.options = onnxruntime.SessionOptions()
        self.options.enable_profiling = args.profile

        print("Loading ONNX model...")
        self.quantized = args.quantized
        if self.quantized:
            model_path = "build/data/bert_tf_v1_1_large_fp32_384_v2/bert_large_v1_1_fake_quant.onnx"
        else:
            model_path = "build/data/bert_tf_v1_1_large_fp32_384_v2/model.onnx"
        self.sess = onnxruntime.InferenceSession(model_path, self.options)

        print("Constructing SUT...")
        self.sut = lg.ConstructSUT(self.issue_queries, self.flush_queries, self.process_latencies)
        print("Finished constructing SUT.")

        self.qsl = get_squad_QSL() 
開發者ID:mlperf,項目名稱:inference,代碼行數:20,代碼來源:onnxruntime_SUT.py

示例6: load

# 需要導入模塊: import onnxruntime [as 別名]
# 或者: from onnxruntime import InferenceSession [as 別名]
def load(cls, bundle, **kwargs):
        """Load a model from a bundle.

        This can be either a local model or a remote, exported model.

        :returns a Service implementation
        """
        import onnxruntime as ort
        if os.path.isdir(bundle):
            directory = bundle
        else:
            directory = unzip_files(bundle)

        model_basename = find_model_basename(directory)
        model_name = f"{model_basename}.onnx"

        vocabs = load_vocabs(directory)
        vectorizers = load_vectorizers(directory)

        # Currently nothing to do here
        labels = read_json(model_basename + '.labels')

        model = ort.InferenceSession(model_name)
        return cls(vocabs, vectorizers, model, labels) 
開發者ID:dpressel,項目名稱:mead-baseline,代碼行數:26,代碼來源:services.py

示例7: test_pad_opset_10

# 需要導入模塊: import onnxruntime [as 別名]
# 或者: from onnxruntime import InferenceSession [as 別名]
def test_pad_opset_10(self):

        pad = OnnxPad('X', output_names=['Y'],
                      mode='constant', value=1.5,
                      pads=[0, 1, 0, 1],
                      op_version=2)

        X = np.array([[0, 1]], dtype=np.float32)
        model_def = pad.to_onnx({'X': X}, target_opset=10)
        onnx.checker.check_model(model_def)

        def predict_with_onnxruntime(model_def, *inputs):
            sess = ort.InferenceSession(model_def.SerializeToString())
            names = [i.name for i in sess.get_inputs()]
            dinputs = {name: input for name, input in zip(names, inputs)}
            res = sess.run(None, dinputs)
            names = [o.name for o in sess.get_outputs()]
            return {name: output for name, output in zip(names, res)}

        Y = predict_with_onnxruntime(model_def, X)
        assert_almost_equal(
            np.array([[1.5, 0., 1., 1.5]], dtype=np.float32), Y['Y']) 
開發者ID:onnx,項目名稱:sklearn-onnx,代碼行數:24,代碼來源:test_algebra_onnx_operators_opset.py

示例8: test_model_tfidf_vectorizer11

# 需要導入模塊: import onnxruntime [as 別名]
# 或者: from onnxruntime import InferenceSession [as 別名]
def test_model_tfidf_vectorizer11(self):
        corpus = numpy.array([
            "This is the first document.",
            "This document is the second document.",
            "And this is the third one.",
            "Is this the first document?",
        ]).reshape((4, 1))
        vect = TfidfVectorizer(ngram_range=(1, 1), norm=None)
        vect.fit(corpus.ravel())
        model_onnx = convert_sklearn(vect, "TfidfVectorizer",
                                     [("input", StringTensorType())],
                                     options=self.get_options())
        self.assertTrue(model_onnx is not None)
        dump_data_and_model(
            corpus,
            vect,
            model_onnx,
            basename="SklearnTfidfVectorizer11-OneOff-SklCol",
            allow_failure="StrictVersion(onnxruntime.__version__)"
                          " <= StrictVersion('0.4.0')",
        )

        sess = InferenceSession(model_onnx.SerializeToString())
        res = sess.run(None, {'input': corpus.ravel()})[0]
        assert res.shape == (4, 9) 
開發者ID:onnx,項目名稱:sklearn-onnx,代碼行數:27,代碼來源:test_sklearn_tfidf_vectorizer_converter.py

示例9: test_model_tfidf_vectorizer11_compose

# 需要導入模塊: import onnxruntime [as 別名]
# 或者: from onnxruntime import InferenceSession [as 別名]
def test_model_tfidf_vectorizer11_compose(self):
        corpus = numpy.array([
            "This is the first document.",
            "This document is the second document.",
            "And this is the third one.",
            "Is this the first document?",
        ]).reshape((4, 1))
        corpus = numpy.hstack([corpus, corpus])
        y = numpy.array([0, 1, 0, 1])
        model = ColumnTransformer([
            ('a', TfidfVectorizer(), 0),
            ('b', TfidfVectorizer(), 1),
        ])
        model.fit(corpus, y)
        model_onnx = convert_sklearn(model, "TfIdfcomp",
                                     [("input", StringTensorType([4, 2]))],
                                     options=self.get_options())
        sess = InferenceSession(model_onnx.SerializeToString())
        res = sess.run(None, {'input': corpus})[0]
        exp = model.transform(corpus)
        assert_almost_equal(res, exp) 
開發者ID:onnx,項目名稱:sklearn-onnx,代碼行數:23,代碼來源:test_sklearn_tfidf_vectorizer_converter.py

示例10: test_kernel_ker2_def

# 需要導入模塊: import onnxruntime [as 別名]
# 或者: from onnxruntime import InferenceSession [as 別名]
def test_kernel_ker2_def(self):
        ker = Sum(
            C(0.1, (1e-3, 1e3)) * RBF(length_scale=10,
                                      length_scale_bounds=(1e-3, 1e3)),
            C(0.1, (1e-3, 1e3)) * RBF(length_scale=1,
                                      length_scale_bounds=(1e-3, 1e3))
        )
        onx = convert_kernel(ker, 'X', output_names=['Y'], dtype=np.float32,
                             op_version=_TARGET_OPSET_)
        model_onnx = onx.to_onnx(
            inputs=[('X', FloatTensorType([None, None]))], dtype=np.float32)
        sess = InferenceSession(model_onnx.SerializeToString())
        res = sess.run(None, {'X': Xtest_.astype(np.float32)})[0]
        m1 = res
        m2 = ker(Xtest_)
        assert_almost_equal(m1, m2, decimal=0) 
開發者ID:onnx,項目名稱:sklearn-onnx,代碼行數:18,代碼來源:test_sklearn_gaussian_process.py

示例11: test_kernel_ker2_exp_sine_squared

# 需要導入模塊: import onnxruntime [as 別名]
# 或者: from onnxruntime import InferenceSession [as 別名]
def test_kernel_ker2_exp_sine_squared(self):
        ker = ExpSineSquared()
        onx = convert_kernel(ker, 'X', output_names=['Y'], dtype=np.float32,
                             op_version=_TARGET_OPSET_)
        model_onnx = onx.to_onnx(
            inputs=[('X', FloatTensorType([None, None]))], dtype=np.float32)
        sess = InferenceSession(model_onnx.SerializeToString())
        res = sess.run(None, {'X': Xtest_.astype(np.float32)})[0]
        m1 = res
        m2 = ker(Xtest_)
        assert_almost_equal(m1, m2, decimal=4)

        onx = convert_kernel(ker, 'X', output_names=['Z'],
                             x_train=(Xtest_ * 2).astype(np.float32),
                             dtype=np.float32, op_version=_TARGET_OPSET_)
        model_onnx = onx.to_onnx(
            inputs=[('X', FloatTensorType([None, None]))], dtype=np.float32)
        sess = InferenceSession(model_onnx.SerializeToString())
        res = sess.run(None, {'X': Xtest_.astype(np.float32)})[0]
        m1 = res
        m2 = ker(Xtest_, Xtest_ * 2)
        assert_almost_equal(m1, m2, decimal=4) 
開發者ID:onnx,項目名稱:sklearn-onnx,代碼行數:24,代碼來源:test_sklearn_gaussian_process.py

示例12: test_kernel_dot_product

# 需要導入模塊: import onnxruntime [as 別名]
# 或者: from onnxruntime import InferenceSession [as 別名]
def test_kernel_dot_product(self):
        ker = DotProduct()
        onx = convert_kernel(ker, 'X', output_names=['Y'], dtype=np.float32,
                             op_version=_TARGET_OPSET_)
        model_onnx = onx.to_onnx(
            inputs=[('X', FloatTensorType([None, None]))], dtype=np.float32)
        sess = InferenceSession(model_onnx.SerializeToString())
        res = sess.run(None, {'X': Xtest_.astype(np.float32)})[0]
        m1 = res
        m2 = ker(Xtest_)
        assert_almost_equal(m1 / 1000, m2 / 1000, decimal=5)

        onx = convert_kernel(ker, 'X', output_names=['Z'],
                             x_train=(Xtest_ * 2).astype(np.float32),
                             dtype=np.float32, op_version=_TARGET_OPSET_)
        model_onnx = onx.to_onnx(
            inputs=[('X', FloatTensorType([None, None]))], dtype=np.float32)
        sess = InferenceSession(model_onnx.SerializeToString())
        res = sess.run(None, {'X': Xtest_.astype(np.float32)})[0]
        m1 = res
        m2 = ker(Xtest_, Xtest_ * 2)
        assert_almost_equal(m1 / 1000, m2 / 1000, decimal=5) 
開發者ID:onnx,項目名稱:sklearn-onnx,代碼行數:24,代碼來源:test_sklearn_gaussian_process.py

示例13: test_algebra_abs

# 需要導入模塊: import onnxruntime [as 別名]
# 或者: from onnxruntime import InferenceSession [as 別名]
def test_algebra_abs(self):

        op = OnnxAbs('I0', op_version=TARGET_OPSET)
        onx = op.to_onnx({'I0': numpy.empty((1, 2), dtype=numpy.float32)})
        assert onx is not None

        import onnxruntime as ort
        try:
            sess = ort.InferenceSession(onx.SerializeToString())
        except RuntimeError as e:
            raise RuntimeError("Unable to read\n{}".format(onx)) from e
        X = numpy.array([[0, 1], [-1, -2]])
        try:
            Y = sess.run(None, {'I0': X.astype(numpy.float32)})[0]
        except RuntimeError as e:
            raise RuntimeError("Unable to run\n{}".format(onx)) from e
        assert_almost_equal(Y, numpy.abs(X)) 
開發者ID:onnx,項目名稱:sklearn-onnx,代碼行數:19,代碼來源:test_algebra_symbolic.py

示例14: test_algebra_normalizer

# 需要導入模塊: import onnxruntime [as 別名]
# 或者: from onnxruntime import InferenceSession [as 別名]
def test_algebra_normalizer(self):
        op = OnnxNormalizer('I0', norm='L1', op_version=1,
                            output_names=['Y'])
        onx = op.to_onnx({'I0': numpy.ones((1, 2), dtype=numpy.float32)},
                         outputs=[('Y', FloatTensorType())],
                         target_opset={'': 10})
        assert onx is not None
        sonx = str(onx)
        assert "ai.onnx.ml" in sonx
        assert "version: 1" in sonx

        import onnxruntime as ort
        sess = ort.InferenceSession(onx.SerializeToString())
        X = numpy.array([[0, 2], [0, -2]])
        exp = numpy.array([[0, 1], [0, -1]])
        Y = sess.run(None, {'I0': X.astype(numpy.float32)})[0]
        assert_almost_equal(exp, Y) 
開發者ID:onnx,項目名稱:sklearn-onnx,代碼行數:19,代碼來源:test_algebra_symbolic.py

示例15: test_algebra_normalizer_shape

# 需要導入模塊: import onnxruntime [as 別名]
# 或者: from onnxruntime import InferenceSession [as 別名]
def test_algebra_normalizer_shape(self):

        op = OnnxNormalizer('I0', norm='L1', op_version=1, output_names=['O0'])
        onx = op.to_onnx({'I0': numpy.ones((1, 2), dtype=numpy.float32)},
                         outputs=[('O0', FloatTensorType((None, 2)))])
        assert onx is not None
        sonx = str(onx)
        assert "ai.onnx.ml" in sonx
        assert "version: 1" in sonx

        import onnxruntime as ort
        sess = ort.InferenceSession(onx.SerializeToString())
        X = numpy.array([[0, 2], [0, -2]])
        exp = numpy.array([[0, 1], [0, -1]])
        Y = sess.run(None, {'I0': X.astype(numpy.float32)})[0]
        assert_almost_equal(exp, Y) 
開發者ID:onnx,項目名稱:sklearn-onnx,代碼行數:18,代碼來源:test_algebra_symbolic.py


注:本文中的onnxruntime.InferenceSession方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。