當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy_helper.to_array方法代碼示例

本文整理匯總了Python中onnx.numpy_helper.to_array方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy_helper.to_array方法的具體用法?Python numpy_helper.to_array怎麽用?Python numpy_helper.to_array使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在onnx.numpy_helper的用法示例。


在下文中一共展示了numpy_helper.to_array方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _convertAttributeProto

# 需要導入模塊: from onnx import numpy_helper [as 別名]
# 或者: from onnx.numpy_helper import to_array [as 別名]
def _convertAttributeProto(onnx_arg):  # type: (AttributeProto) -> AttributeValue
    """
    Convert an ONNX AttributeProto into an appropriate Python object
    for the type.
    NB: Tensor attribute gets returned as numpy array
    """
    if onnx_arg.HasField('f'):
        return onnx_arg.f
    elif onnx_arg.HasField('i'):
        return onnx_arg.i
    elif onnx_arg.HasField('s'):
        return onnx_arg.s
    elif onnx_arg.HasField('t'):
        return numpy_helper.to_array(onnx_arg.t)
    elif len(onnx_arg.floats):
        return list(onnx_arg.floats)
    elif len(onnx_arg.ints):
        return list(onnx_arg.ints)
    elif len(onnx_arg.strings):
        return list(onnx_arg.strings)
    else:
        return None 
開發者ID:onnx,項目名稱:onnx-coreml,代碼行數:24,代碼來源:_graph.py

示例2: __init__

# 需要導入模塊: from onnx import numpy_helper [as 別名]
# 或者: from onnx.numpy_helper import to_array [as 別名]
def __init__(self, name=None, graph_proto=None):
    if graph_proto:
      self._name = graph_proto.name
      self._inputs_proto = list(graph_proto.input)
      self._outputs_proto = list(graph_proto.output)
      self._nodes_proto = list(graph_proto.node)
      self._consts_proto = list(graph_proto.initializer)
      self._value_info_proto = list(graph_proto.value_info)
      self._consts = dict([(init.name, numpy_helper.to_array(init))
                           for init in graph_proto.initializer])
    else:
      self._name = name or ""
      self._inputs_proto = []
      self._outputs_proto = []
      self._nodes_proto = []
      self._consts = {}
      self._consts_proto = []
      self._value_info_proto = []
    # Either way, data_type_cast_map is empty when initialized.
    self._data_type_cast_map = {}

    self._add_utility_constants() 
開發者ID:onnx,項目名稱:onnx-tensorflow,代碼行數:24,代碼來源:pb_wrapper.py

示例3: version_9

# 需要導入模塊: from onnx import numpy_helper [as 別名]
# 或者: from onnx.numpy_helper import to_array [as 別名]
def version_9(cls, node, **kwargs):
    attrs = copy.deepcopy(node.attrs)

    shape = kwargs["tensor_dict"][node.inputs[0]]

    # make sure the shape dtype is either int32 or int64
    if shape.dtype not in [tf.int64, tf.int32]:
      shape = tf.cast(shape, tf.int64)

    # the default value is 0, float32
    if "value" in node.attrs:
      attr_value = node.attrs["value"]
      value = numpy_helper.to_array(attr_value)
      attrs["value"] = value[0]
    else:
      attrs["value"] = 0.

    return [
        cls.make_tensor_from_onnx_node(
            node, inputs=[shape], attrs=attrs, **kwargs)
    ] 
開發者ID:onnx,項目名稱:onnx-tensorflow,代碼行數:23,代碼來源:constant_of_shape.py

示例4: _get_attribute_value

# 需要導入模塊: from onnx import numpy_helper [as 別名]
# 或者: from onnx.numpy_helper import to_array [as 別名]
def _get_attribute_value(attr):
        """
        Retrieves value from attribute in ONNX graph.
        """
        if attr.HasField("f"):  # floating-point attribute
            return attr.f
        elif attr.HasField("i"):  # integer attribute
            return attr.i
        elif attr.HasField("s"):  # string attribute
            return attr.s  # TODO: Sanitize string.
        elif attr.HasField("t"):  # tensor attribute
            return torch.from_numpy(numpy_helper.to_array(attr.t))
        elif len(attr.ints) > 0:
            return list(attr.ints)
        elif len(attr.floats) > 0:
            return list(attr.floats)
        raise ValueError("Unknown attribute type for attribute %s." % attr.name) 
開發者ID:facebookresearch,項目名稱:CrypTen,代碼行數:19,代碼來源:onnx_converter.py

示例5: _convertAttributeProto

# 需要導入模塊: from onnx import numpy_helper [as 別名]
# 或者: from onnx.numpy_helper import to_array [as 別名]
def _convertAttributeProto(onnx_arg):  # type: (AttributeProto) -> AttributeValue
    """
    Convert an ONNX AttributeProto into an appropriate Python object
    for the type.
    NB: Tensor attribute gets returned as numpy array
    """
    if onnx_arg.HasField('f'):
        return onnx_arg.f
    elif onnx_arg.HasField('i'):
        return onnx_arg.i
    elif onnx_arg.HasField('s'):
        return onnx_arg.s
    elif onnx_arg.HasField('t'):
        return numpy_helper.to_array(onnx_arg.t)
    elif len(onnx_arg.floats):
        return list(onnx_arg.floats)
    elif len(onnx_arg.ints):
        return list(onnx_arg.ints)
    elif len(onnx_arg.strings):
        return list(onnx_arg.strings)
    else:
        raise ValueError("Unsupported ONNX attribute: {}".format(onnx_arg)) 
開發者ID:MTlab,項目名稱:onnx2caffe,代碼行數:24,代碼來源:_graph.py

示例6: make_empty_exec_context

# 需要導入模塊: from onnx import numpy_helper [as 別名]
# 或者: from onnx.numpy_helper import to_array [as 別名]
def make_empty_exec_context(self):
        """Creates an empty execution context for this model.

        The execution context is a dictionary of all tensors used for the
        inference computation. Any initializer values will be taken into
        account, all other tensors will be zero."""
        execution_context = dict()
        graph = self._model_proto.graph
        # make empty tensors for all the graph inputs and outputs
        for vi in graph.input:
            new_tensor = onnxutil.valueinfo_to_tensor(vi)
            execution_context[vi.name] = new_tensor
        for vi in graph.output:
            new_tensor = onnxutil.valueinfo_to_tensor(vi)
            execution_context[vi.name] = new_tensor
        # make empty tensors for all intermediate buffers
        for vi in graph.value_info:
            new_tensor = onnxutil.valueinfo_to_tensor(vi)
            execution_context[vi.name] = new_tensor
        # fill in the constants provided by the initializers (TensorProto to npy)
        for t in graph.initializer:
            execution_context[t.name] = np_helper.to_array(t)
        return execution_context 
開發者ID:Xilinx,項目名稱:finn,代碼行數:25,代碼來源:modelwrapper.py

示例7: test_brevitas_fc_onnx_export_and_exec

# 需要導入模塊: from onnx import numpy_helper [as 別名]
# 或者: from onnx.numpy_helper import to_array [as 別名]
def test_brevitas_fc_onnx_export_and_exec(size, wbits, abits):
    if size == "LFC" and wbits == 2 and abits == 2:
        pytest.skip("No LFC-w2a2 present at the moment")
    if wbits > abits:
        pytest.skip("No wbits > abits cases at the moment")
    nname = "%s_%dW%dA" % (size, wbits, abits)
    finn_onnx = export_onnx_path + "/%s.onnx" % nname
    fc = get_test_model_trained(size, wbits, abits)
    bo.export_finn_onnx(fc, (1, 1, 28, 28), finn_onnx)
    model = ModelWrapper(finn_onnx)
    model = model.transform(InferShapes())
    model = model.transform(FoldConstants())
    # load one of the test vectors
    raw_i = get_data("finn", "data/onnx/mnist-conv/test_data_set_0/input_0.pb")
    input_tensor = onnx.load_tensor_from_string(raw_i)
    # run using FINN-based execution
    input_dict = {"0": nph.to_array(input_tensor)}
    output_dict = oxe.execute_onnx(model, input_dict)
    produced = output_dict[list(output_dict.keys())[0]]
    # run using PyTorch/Brevitas
    input_tensor = torch.from_numpy(nph.to_array(input_tensor)).float()
    assert input_tensor.shape == (1, 1, 28, 28)
    # do forward pass in PyTorch/Brevitas
    expected = fc.forward(input_tensor).detach().numpy()
    assert np.isclose(produced, expected, atol=1e-3).all() 
開發者ID:Xilinx,項目名稱:finn,代碼行數:27,代碼來源:test_brevitas_fc.py

示例8: test_convert_bipolar_matmul_to_xnorpopcountmatmul

# 需要導入模塊: from onnx import numpy_helper [as 別名]
# 或者: from onnx.numpy_helper import to_array [as 別名]
def test_convert_bipolar_matmul_to_xnorpopcountmatmul():
    lfc = get_test_model_trained("LFC", 1, 1)
    bo.export_finn_onnx(lfc, (1, 1, 28, 28), export_onnx_path)
    model = ModelWrapper(export_onnx_path)
    model = model.transform(InferShapes())
    model = model.transform(FoldConstants())
    model = model.transform(GiveUniqueNodeNames())
    model = model.transform(GiveReadableTensorNames())
    model = model.transform(ConvertSignToThres())
    # load one of the test vectors
    raw_i = get_data("finn", "data/onnx/mnist-conv/test_data_set_0/input_0.pb")
    input_tensor = onnx.load_tensor_from_string(raw_i)
    # run using FINN-based execution
    input_dict = {"global_in": nph.to_array(input_tensor)}
    expected_ctx = oxe.execute_onnx(model, input_dict, True)
    expected = expected_ctx[model.graph.output[0].name]
    model = model.transform(ConvertBipolarMatMulToXnorPopcount())
    produced_ctx = oxe.execute_onnx(model, input_dict, True)
    produced = produced_ctx[model.graph.output[0].name]
    assert np.isclose(expected, produced, atol=1e-3).all()
    os.remove(export_onnx_path) 
開發者ID:Xilinx,項目名稱:finn,代碼行數:23,代碼來源:test_xnorpopcountmatmul.py

示例9: test_streamline_fc

# 需要導入模塊: from onnx import numpy_helper [as 別名]
# 或者: from onnx.numpy_helper import to_array [as 別名]
def test_streamline_fc(size, wbits, abits):
    if size == "LFC" and wbits == 2 and abits == 2:
        pytest.skip("No LFC-w2a2 present at the moment")
    if wbits > abits:
        pytest.skip("No wbits > abits cases at the moment")
    nname = "%s_%dW%dA" % (size, wbits, abits)
    finn_onnx = export_onnx_path + "/%s.onnx" % nname
    fc = get_test_model_trained(size, wbits, abits)
    bo.export_finn_onnx(fc, (1, 1, 28, 28), finn_onnx)
    model = ModelWrapper(finn_onnx)
    model = model.transform(InferShapes())
    model = model.transform(FoldConstants())
    model = model.transform(GiveUniqueNodeNames())
    model = model.transform(GiveReadableTensorNames())
    # load one of the test vectors
    raw_i = get_data("finn", "data/onnx/mnist-conv/test_data_set_0/input_0.pb")
    input_tensor = onnx.load_tensor_from_string(raw_i)
    # run using FINN-based execution
    input_dict = {"global_in": nph.to_array(input_tensor)}
    expected_ctx = oxe.execute_onnx(model, input_dict, True)
    expected = expected_ctx[model.graph.output[0].name]
    model = model.transform(Streamline())
    produced_ctx = oxe.execute_onnx(model, input_dict, True)
    produced = produced_ctx[model.graph.output[0].name]
    assert np.isclose(expected, produced, atol=1e-3).all() 
開發者ID:Xilinx,項目名稱:finn,代碼行數:27,代碼來源:test_streamline_fc.py

示例10: test_mnist_onnx_download_extract_run

# 需要導入模塊: from onnx import numpy_helper [as 別名]
# 或者: from onnx.numpy_helper import to_array [as 別名]
def test_mnist_onnx_download_extract_run():
    # load the onnx model
    raw_m = get_data("finn", "data/onnx/mnist-conv/model.onnx")
    model = ModelWrapper(raw_m)
    model = model.transform(InferShapes())
    # load one of the test vectors
    raw_i = get_data("finn", "data/onnx/mnist-conv/test_data_set_0/input_0.pb")
    raw_o = get_data("finn", "data/onnx/mnist-conv/test_data_set_0/output_0.pb")
    input_tensor = onnx.load_tensor_from_string(raw_i)
    output_tensor = onnx.load_tensor_from_string(raw_o)
    # run using FINN-based execution
    input_dict = {"Input3": np_helper.to_array(input_tensor)}
    output_dict = oxe.execute_onnx(model, input_dict)
    assert np.isclose(
        np_helper.to_array(output_tensor), output_dict["Plus214_Output_0"], atol=1e-3
    ).all() 
開發者ID:Xilinx,項目名稱:finn,代碼行數:18,代碼來源:test_basic_onnx_exec.py

示例11: _load_protobuf_data

# 需要導入模塊: from onnx import numpy_helper [as 別名]
# 或者: from onnx.numpy_helper import to_array [as 別名]
def _load_protobuf_data(self, model_dir,
                            data_sets: List[OnnxTestData]):
        for test_data_dir in glob.glob(os.path.join(model_dir, "test_data_set*")):
            inputs = {}
            outputs = {}
            
            inputs_num = len(glob.glob(os.path.join(test_data_dir, 'input_*.pb')))
            for i in range(inputs_num):
                input_file = os.path.join(test_data_dir, 'input_{}.pb'.format(i))
                tensor = onnx.TensorProto()
                with open(input_file, 'rb') as f:
                    tensor.ParseFromString(f.read())
                inputs[tensor.name] = numpy_helper.to_array(tensor)
            ref_outputs_num = len(glob.glob(os.path.join(test_data_dir, 'output_*.pb')))
            for i in range(ref_outputs_num):
                output_file = os.path.join(test_data_dir, 'output_{}.pb'.format(i))
                tensor = onnx.TensorProto()
                with open(output_file, 'rb') as f:
                    tensor.ParseFromString(f.read())
                outputs[tensor.name] = numpy_helper.to_array(tensor)

            data_sets.append(OnnxTestData(inputs, outputs)) 
開發者ID:deep500,項目名稱:deep500,代碼行數:24,代碼來源:onnx_test_parser.py

示例12: _onnx_initializer_to_input_dict_items

# 需要導入模塊: from onnx import numpy_helper [as 別名]
# 或者: from onnx.numpy_helper import to_array [as 別名]
def _onnx_initializer_to_input_dict_items(initializer):
  """ Convert ONNX graph initializer to input dict items.

  :param initializer: ONNX graph initializer, list of TensorProto.
  :return: List of input dict items.
  """
  def tensor2list(onnx_tensor):
    # Use the onnx.numpy_helper because the data may be raw
    return numpy_helper.to_array(onnx_tensor).flatten().tolist()

  return [(init.name,
            tf.constant(
                tensor2list(init),
                shape=init.dims,
                dtype=onnx2tf(init.data_type)))
          for init in initializer] 
開發者ID:uTensor,項目名稱:utensor_cgen,代碼行數:18,代碼來源:onnx.py

示例13: gen_input_list

# 需要導入模塊: from onnx import numpy_helper [as 別名]
# 或者: from onnx.numpy_helper import to_array [as 別名]
def gen_input_list(input_path, isPytorch=False):
    inputs = []
    i = 0
    print(input_path)
    full_path = os.path.join(input_path, "input_%s.pb" % i)
    while os.path.isfile(full_path):
        if isPytorch:
            inputs.append(torch.tensor(numpy_helper.to_array(readInputFromFile(full_path))))
        else:
            inputs.append(numpy_helper.to_array(readInputFromFile(full_path)))
        i += 1
        full_path = os.path.join(input_path, "input_%s.pb" % i)
    if len(inputs) == 1:
        return inputs[0]
    else:
        return inputs 
開發者ID:microsoft,項目名稱:OLive,代碼行數:18,代碼來源:check_model.py

示例14: onnx_initializer_to_tensors

# 需要導入模塊: from onnx import numpy_helper [as 別名]
# 或者: from onnx.numpy_helper import to_array [as 別名]
def onnx_initializer_to_tensors(initializer):
    ''' 
    Convert ONNX graph initializer to tensors 
    
    Parameters
    ----------
    initializer : list of ONNX TensorProto
        Specifies the initializer of the graph.

    Returns
    -------
    list of numpy.ndarray

    '''

    return [(init.name,
             numpy_helper.to_array(init))
            for init in initializer] 
開發者ID:sassoftware,項目名稱:python-dlpy,代碼行數:20,代碼來源:sas_onnx_parse.py

示例15: onnx_node_attributes_to_dict

# 需要導入模塊: from onnx import numpy_helper [as 別名]
# 或者: from onnx.numpy_helper import to_array [as 別名]
def onnx_node_attributes_to_dict(args):
    """
    Parse ONNX attributes to Python dictionary
    :param args: ONNX attributes object
    :return: Python dictionary
    """
    def onnx_attribute_to_dict(onnx_attr):
        """
        Parse ONNX attribute
        :param onnx_attr: ONNX attribute
        :return: Python data type
        """
        if onnx_attr.HasField('t'):
            return numpy_helper.to_array(getattr(onnx_attr, 't'))

        for attr_type in ['f', 'i', 's']:
            if onnx_attr.HasField(attr_type):
                return getattr(onnx_attr, attr_type)

        for attr_type in ['floats', 'ints', 'strings']:
            if getattr(onnx_attr, attr_type):
                return list(getattr(onnx_attr, attr_type))
    return {arg.name: onnx_attribute_to_dict(arg) for arg in args} 
開發者ID:nerox8664,項目名稱:onnx2keras,代碼行數:25,代碼來源:converter.py


注:本文中的onnx.numpy_helper.to_array方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。