當前位置: 首頁>>代碼示例>>Python>>正文


Python numpy_helper.from_array方法代碼示例

本文整理匯總了Python中onnx.numpy_helper.from_array方法的典型用法代碼示例。如果您正苦於以下問題:Python numpy_helper.from_array方法的具體用法?Python numpy_helper.from_array怎麽用?Python numpy_helper.from_array使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在onnx.numpy_helper的用法示例。


在下文中一共展示了numpy_helper.from_array方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: new_tensor_impl

# 需要導入模塊: from onnx import numpy_helper [as 別名]
# 或者: from onnx.numpy_helper import from_array [as 別名]
def new_tensor_impl(self, ndarray_, name):
        '''
        generate a tensor which contains np data
        it is for constant input
        '''

        if not config.float_restrict:
            if ndarray_.dtype == np.float64:
                ndarray_ = ndarray_.astype(np.float32)

        tensor = numpy_helper.from_array(ndarray_, name=name)
        dt = onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[np.dtype(ndarray_.dtype)]

        tensor_value = oh.make_tensor_value_info(name, dt, ndarray_.shape)

        self.generator.onnx_tensors[name] = tensor_value

        return tensor, tensor_value 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:20,代碼來源:onnx_converters.py

示例2: test_conv

# 需要導入模塊: from onnx import numpy_helper [as 別名]
# 或者: from onnx.numpy_helper import from_array [as 別名]
def test_conv(self):  # type: () -> None
        kernel_shape = (3, 2)
        strides = (2, 3)
        pads = (4, 2, 4, 2)
        dilations = (1, 2)
        group = 1
        weight = from_array(_random_array((16, 3, 3, 2)), name="weight")

        input_shape = (1, 3, 224, 224)
        output_size = _conv_pool_output_size(input_shape, dilations,
                                             kernel_shape, pads, strides)

        output_shape = (1, int(weight.dims[0]), output_size[0], output_size[1])

        _test_single_node(
            "Conv",
            [input_shape],
            [output_shape],
            initializer=[weight],
            dilations=dilations,
            group=group,
            kernel_shape=kernel_shape,
            pads=pads,
            strides=strides
        ) 
開發者ID:onnx,項目名稱:onnx-coreml,代碼行數:27,代碼來源:operators_test.py

示例3: test_conv_without_pads

# 需要導入模塊: from onnx import numpy_helper [as 別名]
# 或者: from onnx.numpy_helper import from_array [as 別名]
def test_conv_without_pads(self):  # type: () -> None
        kernel_shape = (3, 2)
        strides = (2, 3)
        dilations = (1, 2)
        group = 1
        weight = from_array(_random_array((16, 3, 3, 2)), name="weight")

        input_shape = (1, 3, 224, 224)
        output_size = _conv_pool_output_size(input_shape, dilations,
                                             kernel_shape, [0, 0, 0, 0],
                                             strides)

        output_shape = (1, int(weight.dims[0]), output_size[0], output_size[1])
        _test_single_node(
            "Conv",
            [input_shape],
            [output_shape],
            initializer=[weight],
            dilations=dilations,
            group=group,
            kernel_shape=kernel_shape,
            strides=strides
        ) 
開發者ID:onnx,項目名稱:onnx-coreml,代碼行數:25,代碼來源:operators_test.py

示例4: test_gemm

# 需要導入模塊: from onnx import numpy_helper [as 別名]
# 或者: from onnx.numpy_helper import from_array [as 別名]
def test_gemm(self, minimum_ios_deployment_target='12'):  # type: () -> None
        input_shape = (1, 2048)
        output_shape = (1, 5)
        W = from_array(
            _random_array((output_shape[1], input_shape[1])), name="weight"
        )
        b = from_array(
            _random_array((output_shape[1],)), name="bias"
        )
        _test_single_node(
            "Gemm",
            [input_shape],
            [output_shape],
            initializer=[W, b],
            decimal=3,
            transB=1,
            minimum_ios_deployment_target=minimum_ios_deployment_target
        ) 
開發者ID:onnx,項目名稱:onnx-coreml,代碼行數:20,代碼來源:operators_test.py

示例5: test_conv_without_pads

# 需要導入模塊: from onnx import numpy_helper [as 別名]
# 或者: from onnx.numpy_helper import from_array [as 別名]
def test_conv_without_pads(self):  # type: () -> None
        kernel_shape = (3, 2)
        strides = (2, 3)
        dilations = (1, 2)
        group = 1
        weight = from_array(_random_array((16, 3, 3, 2)), name="weight")

        input_shape = (1, 3, 224, 224)
        output_size = _conv_pool_output_size(
            input_shape, dilations, kernel_shape, [0, 0, 0, 0], strides
        )

        output_shape = (1, int(weight.dims[0]), output_size[0], output_size[1])
        _test_single_node(
            "Conv",
            [input_shape],
            [output_shape],
            initializer=[weight],
            dilations=dilations,
            group=group,
            kernel_shape=kernel_shape,
            strides=strides,
        ) 
開發者ID:apple,項目名稱:coremltools,代碼行數:25,代碼來源:test_operators.py

示例6: test_dropout_remover

# 需要導入模塊: from onnx import numpy_helper [as 別名]
# 或者: from onnx.numpy_helper import from_array [as 別名]
def test_dropout_remover(self):  # type: () -> None
        inputs = [("input", (1, 3, 50, 50))]
        outputs = [("out", (1, 5, 50, 50), TensorProto.FLOAT)]
        weight = numpy_helper.from_array(_random_array((5, 3, 1, 1)), name="weight")
        conv = helper.make_node(
            "Conv",
            inputs=["input", "weight"],
            outputs=["conv_output"],
            kernel_shape=(1, 1),
            strides=(1, 1),
        )
        drop = helper.make_node(
            "Dropout", inputs=["conv_output"], outputs=["drop_output"],
        )
        exp = helper.make_node("Exp", inputs=["drop_output"], outputs=["out"])

        onnx_model = _onnx_create_model([conv, drop, exp], inputs, outputs)

        graph = Graph.from_onnx(onnx_model.graph, onnx_ir_version=5)
        new_graph = graph.transformed([DropoutRemover()])
        self.assertEqual(len(graph.nodes), 3)
        self.assertEqual(len(new_graph.nodes), 2)
        self.assertEqual(new_graph.nodes[0].inputs[0], "input")
        self.assertEqual(new_graph.nodes[1].inputs[0], new_graph.nodes[0].outputs[0])
        self.assertEqual(new_graph.nodes[1].outputs[0], "out") 
開發者ID:apple,項目名稱:coremltools,代碼行數:27,代碼來源:test_transformers.py

示例7: set_initializer

# 需要導入模塊: from onnx import numpy_helper [as 別名]
# 或者: from onnx.numpy_helper import from_array [as 別名]
def set_initializer(self, tensor_name, tensor_value):
        """Sets the initializer value for tensor with given name."""
        graph = self._model_proto.graph
        # convert tensor_value (numpy array) into TensorProto w/ correct name
        tensor_init_proto = np_helper.from_array(tensor_value)
        tensor_init_proto.name = tensor_name
        # first, remove if an initializer already exists
        init_names = [x.name for x in graph.initializer]
        try:
            init_ind = init_names.index(tensor_name)
            init_old = graph.initializer[init_ind]
            graph.initializer.remove(init_old)
        except ValueError:
            pass
        # create and insert new initializer
        graph.initializer.append(tensor_init_proto)
        # set shape
        dtype = tensor_init_proto.data_type
        self.set_tensor_shape(tensor_name, list(tensor_value.shape), dtype) 
開發者ID:Xilinx,項目名稱:finn,代碼行數:21,代碼來源:modelwrapper.py

示例8: test_replace_initializer

# 需要導入模塊: from onnx import numpy_helper [as 別名]
# 或者: from onnx.numpy_helper import from_array [as 別名]
def test_replace_initializer(self):
        try:
            import onnx
            from dlpy.model_conversion.onnx_graph import OnnxGraph, OnnxNode
            from onnx import numpy_helper
        except:
            unittest.TestCase.skipTest(self, 'onnx package not found')

        graph_ = self._generate_graph1()
        graph = OnnxGraph.from_onnx(graph_)

        conv1 = np.random.rand(64, 3, 7, 7).astype('float32')
        init1 = numpy_helper.from_array(conv1,
                                        name='conv1')
        graph.replace_initializer('conv0', init1)

        self.assertEqual(len(graph.initializer), 1)
        self.assertEqual(graph.initializer[0], init1) 
開發者ID:sassoftware,項目名稱:python-dlpy,代碼行數:20,代碼來源:test_onnx_graph.py

示例9: apply

# 需要導入模塊: from onnx import numpy_helper [as 別名]
# 或者: from onnx.numpy_helper import from_array [as 別名]
def apply(self, node_list):
        if self.end_p.is_reserved:
            return None, False

        n_tensors = self.begin_n.get_precedence_by_idx(1).tensors
        reshape_value_0 = numpy_helper.to_array(n_tensors[0]).tolist()
        cur_perm = Solution.get_perm(self.end_p.origin)
        adjust_reshape = np.array([reshape_value_0[i_] for i_ in cur_perm], dtype=np.int64)

        reshape_initilizer = numpy_helper.from_array(adjust_reshape,
                                                     name=self.begin_n.origin.name + '_initializer_' + str(
                                                         MergeReshapeTransposeSolution.init_number))
        MergeReshapeTransposeSolution.init_number += 1
        self.begin_n.initializers = [reshape_initilizer]
        prev = self.begin_n.get_precedence_by_idx(1)
        prev.successor.remove(self.begin_n)
        self.begin_n.precedence.remove(prev)
        self.begin_n.in_redirect(self.begin_n.get_input_by_idx(1), reshape_initilizer.name)

        node_list = Solution.delete_node_nto1(node_list, self.begin_n, self.end_p, self.end)
        return node_list, True 
開發者ID:microsoft,項目名稱:onnxconverter-common,代碼行數:23,代碼來源:optimizer.py

示例10: totensor

# 需要導入模塊: from onnx import numpy_helper [as 別名]
# 或者: from onnx.numpy_helper import from_array [as 別名]
def totensor(x, env, dtype=None):
    if istensor(x):
        assert dtype is None
        return x

    # We use a scalar false as a None.
    # TODO(hamaji): Revisit to check if this decision is OK.
    if x is None:
        x = False

    if type(x) == tuple or type(x) == list:
        def f(v):
            tv = v.to_tensor(env)
            tw = env.calc(
                'Unsqueeze',
                inputs=[tv.name],
                axes=[0]
            )
            return tw.name

        vs = list(map(f, x))
        # print(vs)
        res = env.calc(
            'Concat',
            inputs=vs,
            axis=0
        )
    else:
        if dtype is None and type(x) == float:
            dtype = np.float32
        x = np.array(x, dtype=dtype)
        res = env.calc(
            'Constant',
            inputs=[],
            value=numpy_helper.from_array(x, name="hoge")
        )

    return res 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:40,代碼來源:utils.py

示例11: rewrite_onnx_tensor

# 需要導入模塊: from onnx import numpy_helper [as 別名]
# 或者: from onnx.numpy_helper import from_array [as 別名]
def rewrite_onnx_tensor(xtensor, new_type):
    value = numpy_helper.to_array(xtensor)
    if new_type.shape is not None and value.shape != new_type.shape:
        sys.stderr.write('The shape of tensor `%s` was changed from '
                         '%s to %s and values were randomized\n' %
                         (xtensor.name, value.shape, new_type.shape))
        value = np.random.rand(*new_type.shape)
    if new_type.dtype is not None:
        value = value.astype(new_type.dtype)
    xtensor.CopyFrom(numpy_helper.from_array(value, xtensor.name)) 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:12,代碼來源:input_rewriter.py

示例12: dump_test_inputs_outputs

# 需要導入模塊: from onnx import numpy_helper [as 別名]
# 或者: from onnx.numpy_helper import from_array [as 別名]
def dump_test_inputs_outputs(inputs, outputs, gradients, test_data_dir):
    if not os.path.exists(test_data_dir):
        os.makedirs(test_data_dir)

    for typ, values in [('input', inputs),
                        ('output', outputs),
                        ('gradient', gradients)]:
        for i, (value_info, value) in enumerate(values):
            if typ == 'gradient':
                name = value_info.name
            else:
                name = onnx_name(value_info)
            if isinstance(value, list):
                assert value
                digits = len(str(len(value)))
                for j, v in enumerate(value):
                    filename = os.path.join(
                        test_data_dir,
                        '%s_%d_%s.pb' % (typ, i, str(j).zfill(digits)))
                    tensor = numpy_helper.from_array(v, name)
                    with open(filename, 'wb') as f:
                        f.write(tensor.SerializeToString())

                #value_info.type.CopyFrom(onnx.TypeProto())
                #sequence_type = value_info.type.sequence_type
                #tensor_type = sequence_type.elem_type.tensor_type
                #tensor_type.elem_type = tensor.data_type
            else:
                filename = os.path.join(test_data_dir,
                                        '%s_%d.pb' % (typ, i))
                if value is None:
                    if get_test_args().allow_unused_params:
                        continue
                    raise RuntimeError('Unused parameter: %s' % name)
                tensor = numpy_helper.from_array(value, name)
                with open(filename, 'wb') as f:
                    f.write(tensor.SerializeToString())

                vi = onnx.helper.make_tensor_value_info(
                    name, tensor.data_type, tensor.dims)
                #value_info.CopyFrom(vi) 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:43,代碼來源:testcasegen.py

示例13: make_constant_node

# 需要導入模塊: from onnx import numpy_helper [as 別名]
# 或者: from onnx.numpy_helper import from_array [as 別名]
def make_constant_node(name, typ, value):
    value = np.array(value)
    tensor = numpy_helper.from_array(value, name=name + '_val')
    node = onnx.helper.make_node('Constant', inputs=[], outputs=[name],
                                 value=tensor)
    return node 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:8,代碼來源:onnx_script.py

示例14: gen_test

# 需要導入模塊: from onnx import numpy_helper [as 別名]
# 或者: from onnx.numpy_helper import from_array [as 別名]
def gen_test(graph, inputs, outputs, name):
    model = onnx.helper.make_model(graph, producer_name='backend-test')

    test_dir = os.path.join('out', name)
    test_data_set_dir = os.path.join(test_dir, 'test_data_set_0')
    if os.path.exists(test_dir):
        shutil.rmtree(test_dir)
    os.makedirs(test_data_set_dir)
    with open(os.path.join(test_dir, 'model.onnx'), 'wb') as f:
        f.write(model.SerializeToString())
    for typ, values in [('input', inputs), ('output', outputs)]:
        for i, (name, value) in enumerate(values):
            if isinstance(value, list):
                assert value
                digits = len(str(len(value)))
                for j, v in enumerate(value):
                    filename = os.path.join(
                        test_data_set_dir,
                        '%s_%d_%s.pb' % (typ, i, str(j).zfill(digits)))
                    tensor = numpy_helper.from_array(v, name)
                    with open(filename, 'wb') as f:
                        f.write(tensor.SerializeToString())
            else:
                filename = os.path.join(test_data_set_dir,
                                        '%s_%d.pb' % (typ, i))
                tensor = numpy_helper.from_array(value, name)
                with open(filename, 'wb') as f:
                    f.write(tensor.SerializeToString()) 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:30,代碼來源:onnx_script.py

示例15: make_graph

# 需要導入模塊: from onnx import numpy_helper [as 別名]
# 或者: from onnx.numpy_helper import from_array [as 別名]
def make_graph(self):
        inputs_vi = [_extract_value_info(a, n)
                     for n, a in self.inputs + self.params]
        outputs_vi = [_extract_value_info(a, n) for n, a in self.outputs]
        initializer = []
        for name, value in self.params:
            typ = onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[value.dtype]
            tensor = numpy_helper.from_array(value, name=name)
            initializer.append(tensor)
        graph = onnx.helper.make_graph(self.nodes, self.graph_name,
                                       inputs=inputs_vi, outputs=outputs_vi,
                                       initializer=initializer)
        return graph 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:15,代碼來源:onnx_script.py


注:本文中的onnx.numpy_helper.from_array方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。