當前位置: 首頁>>代碼示例>>Python>>正文


Python helper.make_node方法代碼示例

本文整理匯總了Python中onnx.helper.make_node方法的典型用法代碼示例。如果您正苦於以下問題:Python helper.make_node方法的具體用法?Python helper.make_node怎麽用?Python helper.make_node使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在onnx.helper的用法示例。


在下文中一共展示了helper.make_node方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_broadcast

# 需要導入模塊: from onnx import helper [as 別名]
# 或者: from onnx.helper import make_node [as 別名]
def test_broadcast():
    """Test for broadcasting in onnx operators."""
    input1 = np.random.rand(1, 3, 4, 5).astype("float32")
    input2 = np.random.rand(1, 5).astype("float32")
    inputs = [helper.make_tensor_value_info("input1", TensorProto.FLOAT, shape=(1, 3, 4, 5)),
              helper.make_tensor_value_info("input2", TensorProto.FLOAT, shape=(1, 5))]

    outputs = [helper.make_tensor_value_info("output", TensorProto.FLOAT, shape=(1, 3, 4, 5))]

    nodes = [helper.make_node("Add", ["input1", "input2"], ["output"])]

    graph = helper.make_graph(nodes,
                              "bcast_test",
                              inputs,
                              outputs)

    bcast_model = helper.make_model(graph)
    
    bkd_rep = mxnet_backend.prepare(bcast_model)
    numpy_op = input1 + input2
    output = bkd_rep.run([input1, input2])
    npt.assert_almost_equal(output[0], numpy_op) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:24,代碼來源:onnx_import_test.py

示例2: test_greater

# 需要導入模塊: from onnx import helper [as 別名]
# 或者: from onnx.helper import make_node [as 別名]
def test_greater():
    """Test for logical greater in onnx operators."""
    input1 = np.random.rand(1, 3, 4, 5).astype("float32")
    input2 = np.random.rand(1, 5).astype("float32")
    inputs = [helper.make_tensor_value_info("input1", TensorProto.FLOAT, shape=(1, 3, 4, 5)),
              helper.make_tensor_value_info("input2", TensorProto.FLOAT, shape=(1, 5))]

    outputs = [helper.make_tensor_value_info("output", TensorProto.FLOAT, shape=(1, 3, 4, 5))]

    nodes = [helper.make_node("Greater", ["input1", "input2"], ["output"])]

    graph = helper.make_graph(nodes,
                              "greater_test",
                              inputs,
                              outputs)

    greater_model = helper.make_model(graph)
    
    bkd_rep = mxnet_backend.prepare(greater_model)
    numpy_op = np.greater(input1, input2).astype(np.float32)
    output = bkd_rep.run([input1, input2])
    npt.assert_almost_equal(output[0], numpy_op) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:24,代碼來源:onnx_import_test.py

示例3: test_lesser

# 需要導入模塊: from onnx import helper [as 別名]
# 或者: from onnx.helper import make_node [as 別名]
def test_lesser():
    """Test for logical greater in onnx operators."""
    input1 = np.random.rand(1, 3, 4, 5).astype("float32")
    input2 = np.random.rand(1, 5).astype("float32")
    inputs = [helper.make_tensor_value_info("input1", TensorProto.FLOAT, shape=(1, 3, 4, 5)),
              helper.make_tensor_value_info("input2", TensorProto.FLOAT, shape=(1, 5))]

    outputs = [helper.make_tensor_value_info("output", TensorProto.FLOAT, shape=(1, 3, 4, 5))]

    nodes = [helper.make_node("Less", ["input1", "input2"], ["output"])]

    graph = helper.make_graph(nodes,
                              "lesser_test",
                              inputs,
                              outputs)

    greater_model = helper.make_model(graph)
    
    bkd_rep = mxnet_backend.prepare(greater_model)
    numpy_op = np.less(input1, input2).astype(np.float32)
    output = bkd_rep.run([input1, input2])
    npt.assert_almost_equal(output[0], numpy_op) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:24,代碼來源:onnx_import_test.py

示例4: test_equal

# 需要導入模塊: from onnx import helper [as 別名]
# 或者: from onnx.helper import make_node [as 別名]
def test_equal():
    """Test for logical greater in onnx operators."""
    input1 = np.random.rand(1, 3, 4, 5).astype("float32")
    input2 = np.random.rand(1, 5).astype("float32")
    inputs = [helper.make_tensor_value_info("input1", TensorProto.FLOAT, shape=(1, 3, 4, 5)),
              helper.make_tensor_value_info("input2", TensorProto.FLOAT, shape=(1, 5))]

    outputs = [helper.make_tensor_value_info("output", TensorProto.FLOAT, shape=(1, 3, 4, 5))]

    nodes = [helper.make_node("Equal", ["input1", "input2"], ["output"])]

    graph = helper.make_graph(nodes,
                              "equal_test",
                              inputs,
                              outputs)

    greater_model = helper.make_model(graph)
    
    bkd_rep = mxnet_backend.prepare(greater_model)
    numpy_op = np.equal(input1, input2).astype(np.float32)
    output = bkd_rep.run([input1, input2])
    npt.assert_almost_equal(output[0], numpy_op) 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:24,代碼來源:onnx_import_test.py

示例5: _make_upsample_node

# 需要導入模塊: from onnx import helper [as 別名]
# 或者: from onnx.helper import make_node [as 別名]
def _make_upsample_node(self, layer_name, layer_dict):
        """Create an ONNX Upsample node with the properties from
        the DarkNet-based graph.

        Keyword arguments:
        layer_name -- the layer's name (also the corresponding key in layer_configs)
        layer_dict -- a layer parameter dictionary (one element of layer_configs)
        """
        upsample_factor = float(layer_dict['stride'])
        previous_node_specs = self._get_previous_node_specs()
        inputs = [previous_node_specs.name]
        channels = previous_node_specs.channels
        assert channels > 0
        upsample_node = helper.make_node(
            'Upsample',
            mode='nearest',
            # For ONNX versions <0.7.0, Upsample nodes accept different parameters than 'scales':
            scales=[1.0, 1.0, upsample_factor, upsample_factor],
            inputs=inputs,
            outputs=[layer_name],
            name=layer_name,
        )
        self._nodes.append(upsample_node)
        return layer_name, channels 
開發者ID:aimuch,項目名稱:iAI,代碼行數:26,代碼來源:yolov3_to_onnx.py

示例6: test_unsqueeze

# 需要導入模塊: from onnx import helper [as 別名]
# 或者: from onnx.helper import make_node [as 別名]
def test_unsqueeze():
    data = np.random.randn(3, 4, 5).astype(np.float32)
    expected_output = np.expand_dims(data, axis=0)
    node = onnx.helper.make_node('Unsqueeze', inputs=['x'], outputs=['y'], axes=[0])
    ng_results = run_node(node, [data])
    assert np.array_equal(ng_results, [expected_output])

    expected_output = np.reshape(data, [1, 3, 4, 5, 1])
    node = onnx.helper.make_node('Unsqueeze', inputs=['x'], outputs=['y'], axes=[0, 4])
    ng_results = run_node(node, [data])
    assert np.array_equal(ng_results, [expected_output])

    expected_output = np.reshape(data, [1, 3, 1, 4, 5])
    node = onnx.helper.make_node('Unsqueeze', inputs=['x'], outputs=['y'], axes=[0, 2])
    ng_results = run_node(node, [data])
    assert np.array_equal(ng_results, [expected_output]) 
開發者ID:NervanaSystems,項目名稱:ngraph-onnx,代碼行數:18,代碼來源:test_reshape.py

示例7: test_identity

# 需要導入模塊: from onnx import helper [as 別名]
# 或者: from onnx.helper import make_node [as 別名]
def test_identity():
    np.random.seed(133391)
    shape = [2, 4]
    input_data = np.random.randn(*shape).astype(np.float32)

    identity_node = make_node('Identity', inputs=['x'], outputs=['y'])
    ng_results = run_node(identity_node, [input_data])
    assert np.array_equal(ng_results, [input_data])

    node1 = make_node('Add', inputs=['A', 'B'], outputs=['add1'], name='add_node1')
    node2 = make_node('Identity', inputs=['add1'], outputs=['identity1'], name='identity_node1')
    node3 = make_node('Abs', inputs=['identity1'], outputs=['Y'], name='abs_node1')

    graph = make_graph([node1, node2, node3], 'test_graph',
                       [make_tensor_value_info('A', onnx.TensorProto.FLOAT, shape),
                        make_tensor_value_info('B', onnx.TensorProto.FLOAT, shape)],
                       [make_tensor_value_info('Y', onnx.TensorProto.FLOAT, shape)])
    model = make_model(graph, producer_name='ngraph ONNX Importer')
    ng_model_function = import_onnx_model(model)
    runtime = get_runtime()
    computation = runtime.computation(ng_model_function)
    ng_results = computation(input_data, input_data)
    expected_result = np.abs(input_data + input_data)

    assert np.array_equal(ng_results[0], expected_result) 
開發者ID:NervanaSystems,項目名稱:ngraph-onnx,代碼行數:27,代碼來源:test_ops_unary.py

示例8: test_constant

# 需要導入模塊: from onnx import helper [as 別名]
# 或者: from onnx.helper import make_node [as 別名]
def test_constant(value_type):
    values = np.random.randn(5, 5).astype(value_type)
    node = onnx.helper.make_node(
        'Constant',
        inputs=[],
        outputs=['values'],
        value=onnx.helper.make_tensor(
            name='const_tensor',
            data_type=onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[np.dtype(value_type)],
            dims=values.shape,
            vals=values.flatten()))

    ng_results = run_node(node, [])
    assert np.allclose(ng_results, [values])


# See https://github.com/onnx/onnx/issues/1190 
開發者ID:NervanaSystems,項目名稱:ngraph-onnx,代碼行數:19,代碼來源:test_ops_unary.py

示例9: make_onnx_model_for_gemm_op

# 需要導入模塊: from onnx import helper [as 別名]
# 或者: from onnx.helper import make_node [as 別名]
def make_onnx_model_for_gemm_op(input_a, input_b, input_c, **kwargs):
    input_a_for_output = input_a
    input_b_for_output = input_b
    if kwargs.get('transA'):
        input_a_for_output = input_a.T
    if kwargs.get('transB'):
        input_b_for_output = input_b.T

    output_shape = np.dot(input_a_for_output, input_b_for_output).shape
    node = make_node('Gemm', ['A', 'B', 'C'], ['Y'], name='test_node', **kwargs)
    graph = make_graph([node], 'test_graph',
                       [make_tensor_value_info('A', onnx.TensorProto.FLOAT, input_a.shape),
                        make_tensor_value_info('B', onnx.TensorProto.FLOAT, input_b.shape),
                        make_tensor_value_info('C', onnx.TensorProto.FLOAT, input_c.shape)],
                       [make_tensor_value_info('Y', onnx.TensorProto.FLOAT, output_shape)])
    model = make_model(graph, producer_name='ngraph ONNXImporter')
    return model 
開發者ID:NervanaSystems,項目名稱:ngraph-onnx,代碼行數:19,代碼來源:test_ops_matmul.py

示例10: test_pool_average

# 需要導入模塊: from onnx import helper [as 別名]
# 或者: from onnx.helper import make_node [as 別名]
def test_pool_average(ndarray_1x1x4x4):
    x = ndarray_1x1x4x4
    node = onnx.helper.make_node('AveragePool', inputs=['x'], outputs=['y'],
                                 kernel_shape=(2, 2), strides=(2, 2))
    y = np.array([[13.5, 15.5],
                  [21.5, 23.5]], dtype=np.float32).reshape(1, 1, 2, 2)
    ng_results = run_node(node, [x])
    assert np.array_equal(ng_results, [y])

    node = onnx.helper.make_node('AveragePool', inputs=['x'], outputs=['y'],
                                 kernel_shape=(2, 2), strides=(2, 2), pads=(1, 1, 1, 1))
    y = np.array([[11, 12.5, 14],
                  [17, 18.5, 20],
                  [23, 24.5, 26]], dtype=np.float32).reshape(1, 1, 3, 3)
    ng_results = run_node(node, [x])
    assert np.array_equal(ng_results, [y]) 
開發者ID:NervanaSystems,項目名稱:ngraph-onnx,代碼行數:18,代碼來源:test_ops_convpool.py

示例11: make_graph

# 需要導入模塊: from onnx import helper [as 別名]
# 或者: from onnx.helper import make_node [as 別名]
def make_graph(nodes, graph_name, inputs, outputs):
    input_dict = {}
    for input in inputs:
        input_dict[input.name] = (input, None)
    outputs_fixed = []
    for output in outputs:
        if output.name in input_dict:
            input, new_output = input_dict[output.name]
            if new_output is None:
                new_output = new_tensor(name=graph_name + '_out')
                nodes.append(helper.make_node('Identity',
                                              inputs=[input.name],
                                              outputs=[new_output.name]))
                input_dict[output.name] = (input, new_output)
        else:
            new_output = output
        outputs_fixed.append(new_output)

    graph_name = gen_graph_name(graph_name)
    return helper.make_graph(nodes, graph_name, inputs, outputs_fixed) 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:22,代碼來源:utils.py

示例12: _onnx_create_single_node_model

# 需要導入模塊: from onnx import helper [as 別名]
# 或者: from onnx.helper import make_node [as 別名]
def _onnx_create_single_node_model(op_type,  # type: Text
                                   input_shapes,  # type: Sequence[Tuple[int, ...]]
                                   output_shapes,  # type: Sequence[Tuple[int, ...]]
                                   initializer=[],  # type: Sequence[TensorProto]
                                   **kwargs  # type: Any
                                   ):
    # type: (...) -> ModelProto
    inputs = [
        ("input{}".format(i,), input_shapes[i])
        for i in range(len(input_shapes))
    ]
    outputs = [
        ("output{}".format(i,), output_shapes[i], TensorProto.FLOAT)
        for i in range(len(output_shapes))
    ]

    node = helper.make_node(
        op_type,
        inputs=[i[0] for i in inputs] + [t.name for t in initializer],
        outputs=[o[0] for o in outputs],
        **kwargs
    )
    return _onnx_create_model([node], inputs, outputs, initializer) 
開發者ID:onnx,項目名稱:onnx-coreml,代碼行數:25,代碼來源:_test_utils.py

示例13: _make_model_acos_exp_topk

# 需要導入模塊: from onnx import helper [as 別名]
# 或者: from onnx.helper import make_node [as 別名]
def _make_model_acos_exp_topk(): # type: (...) -> ModelProto
  '''
  make a very simple model for testing: input->clip->exp->topk->2 outputs
  '''
  inputs = [('input0', (10,), TensorProto.FLOAT), ('K', (1,), TensorProto.INT64)]
  outputs = [('output_values', (3,), TensorProto.FLOAT), ('output_indices', (3,), TensorProto.INT64)]
  acos = helper.make_node("Acos",
                          inputs=[inputs[0][0]],
                          outputs=['acos_out'])
  exp = helper.make_node("Exp",
                        inputs=[acos.output[0]],
                        outputs=['exp_out'])
  topk = helper.make_node("TopK",
                        inputs=[exp.output[0], inputs[1][0]],
                        outputs=[outputs[0][0], outputs[1][0]],
                        axis=0)
  return _onnx_create_model([acos, exp, topk], inputs, outputs) 
開發者ID:onnx,項目名稱:onnx-coreml,代碼行數:19,代碼來源:custom_layers_test.py

示例14: test_add

# 需要導入模塊: from onnx import helper [as 別名]
# 或者: from onnx.helper import make_node [as 別名]
def test_add(self):
    node_def = helper.make_node("Add", ["X", "Y"], ["Z"])
    x = self._get_rnd_float32(shape=[5, 10, 5, 5])
    y = self._get_rnd_float32(shape=[10, 1, 1])
    output = run_node(node_def, [x, y])
    np.testing.assert_almost_equal(output["Z"],
                                   np.add(x, y.reshape([1, 10, 1, 1])))

    # node_def = helper.make_node("Add", ["A", "B"], ["C"], broadcast=1)
    # a = self._get_rnd([10, 10])
    # b = self._get_rnd([10, 10])
    # output = run_node(node_def, [a, b])
    # np.testing.assert_almost_equal(output["C"], np.add(a, b))

    # node_def = helper.make_node("Add", ["A", "B"], ["C"], broadcast=1)
    # a = self._get_rnd([10, 10])
    # b = self._get_rnd([10,])
    # output = run_node(node_def, [a, b])
    # np.testing.assert_almost_equal(output["C"], np.add(a, b)) 
開發者ID:onnx,項目名稱:onnx-tensorflow,代碼行數:21,代碼來源:test_node.py

示例15: test_batch_normalization

# 需要導入模塊: from onnx import helper [as 別名]
# 或者: from onnx.helper import make_node [as 別名]
def test_batch_normalization(self):
    if legacy_opset_pre_ver(6):
      raise unittest.SkipTest("Backend doesn't support consumed flag")
    node_def = helper.make_node("BatchNormalization",
                                ["X", "scale", "bias", "mean", "var"], ["Y"],
                                epsilon=0.001)
    x_shape = [3, 5, 4, 2]
    param_shape = [5]
    _param_shape = [1, 5, 1, 1]
    x = self._get_rnd_float32(0, 1, shape=x_shape)
    m = self._get_rnd_float32(0, 1, shape=param_shape)
    _m = m.reshape(_param_shape)
    v = self._get_rnd_float32(0, 1, shape=param_shape)
    _v = v.reshape(_param_shape)
    scale = self._get_rnd_float32(0, 1, shape=param_shape)
    _scale = scale.reshape(_param_shape)
    bias = self._get_rnd_float32(0, 1, shape=param_shape)
    _bias = bias.reshape(_param_shape)
    golden = self._batch_normalization(x, _m, _v, _bias, _scale, 0.001)
    output = run_node(node_def, [x, scale, bias, m, v])
    np.testing.assert_almost_equal(output["Y"], golden, decimal=5) 
開發者ID:onnx,項目名稱:onnx-tensorflow,代碼行數:23,代碼來源:test_node.py


注:本文中的onnx.helper.make_node方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。