本文整理匯總了Python中onnx.helper.make_model方法的典型用法代碼示例。如果您正苦於以下問題:Python helper.make_model方法的具體用法?Python helper.make_model怎麽用?Python helper.make_model使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類onnx.helper
的用法示例。
在下文中一共展示了helper.make_model方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_broadcast
# 需要導入模塊: from onnx import helper [as 別名]
# 或者: from onnx.helper import make_model [as 別名]
def test_broadcast():
"""Test for broadcasting in onnx operators."""
input1 = np.random.rand(1, 3, 4, 5).astype("float32")
input2 = np.random.rand(1, 5).astype("float32")
inputs = [helper.make_tensor_value_info("input1", TensorProto.FLOAT, shape=(1, 3, 4, 5)),
helper.make_tensor_value_info("input2", TensorProto.FLOAT, shape=(1, 5))]
outputs = [helper.make_tensor_value_info("output", TensorProto.FLOAT, shape=(1, 3, 4, 5))]
nodes = [helper.make_node("Add", ["input1", "input2"], ["output"])]
graph = helper.make_graph(nodes,
"bcast_test",
inputs,
outputs)
bcast_model = helper.make_model(graph)
bkd_rep = mxnet_backend.prepare(bcast_model)
numpy_op = input1 + input2
output = bkd_rep.run([input1, input2])
npt.assert_almost_equal(output[0], numpy_op)
示例2: test_greater
# 需要導入模塊: from onnx import helper [as 別名]
# 或者: from onnx.helper import make_model [as 別名]
def test_greater():
"""Test for logical greater in onnx operators."""
input1 = np.random.rand(1, 3, 4, 5).astype("float32")
input2 = np.random.rand(1, 5).astype("float32")
inputs = [helper.make_tensor_value_info("input1", TensorProto.FLOAT, shape=(1, 3, 4, 5)),
helper.make_tensor_value_info("input2", TensorProto.FLOAT, shape=(1, 5))]
outputs = [helper.make_tensor_value_info("output", TensorProto.FLOAT, shape=(1, 3, 4, 5))]
nodes = [helper.make_node("Greater", ["input1", "input2"], ["output"])]
graph = helper.make_graph(nodes,
"greater_test",
inputs,
outputs)
greater_model = helper.make_model(graph)
bkd_rep = mxnet_backend.prepare(greater_model)
numpy_op = np.greater(input1, input2).astype(np.float32)
output = bkd_rep.run([input1, input2])
npt.assert_almost_equal(output[0], numpy_op)
示例3: test_lesser
# 需要導入模塊: from onnx import helper [as 別名]
# 或者: from onnx.helper import make_model [as 別名]
def test_lesser():
"""Test for logical greater in onnx operators."""
input1 = np.random.rand(1, 3, 4, 5).astype("float32")
input2 = np.random.rand(1, 5).astype("float32")
inputs = [helper.make_tensor_value_info("input1", TensorProto.FLOAT, shape=(1, 3, 4, 5)),
helper.make_tensor_value_info("input2", TensorProto.FLOAT, shape=(1, 5))]
outputs = [helper.make_tensor_value_info("output", TensorProto.FLOAT, shape=(1, 3, 4, 5))]
nodes = [helper.make_node("Less", ["input1", "input2"], ["output"])]
graph = helper.make_graph(nodes,
"lesser_test",
inputs,
outputs)
greater_model = helper.make_model(graph)
bkd_rep = mxnet_backend.prepare(greater_model)
numpy_op = np.less(input1, input2).astype(np.float32)
output = bkd_rep.run([input1, input2])
npt.assert_almost_equal(output[0], numpy_op)
示例4: test_equal
# 需要導入模塊: from onnx import helper [as 別名]
# 或者: from onnx.helper import make_model [as 別名]
def test_equal():
"""Test for logical greater in onnx operators."""
input1 = np.random.rand(1, 3, 4, 5).astype("float32")
input2 = np.random.rand(1, 5).astype("float32")
inputs = [helper.make_tensor_value_info("input1", TensorProto.FLOAT, shape=(1, 3, 4, 5)),
helper.make_tensor_value_info("input2", TensorProto.FLOAT, shape=(1, 5))]
outputs = [helper.make_tensor_value_info("output", TensorProto.FLOAT, shape=(1, 3, 4, 5))]
nodes = [helper.make_node("Equal", ["input1", "input2"], ["output"])]
graph = helper.make_graph(nodes,
"equal_test",
inputs,
outputs)
greater_model = helper.make_model(graph)
bkd_rep = mxnet_backend.prepare(greater_model)
numpy_op = np.equal(input1, input2).astype(np.float32)
output = bkd_rep.run([input1, input2])
npt.assert_almost_equal(output[0], numpy_op)
示例5: test_simple_graph
# 需要導入模塊: from onnx import helper [as 別名]
# 或者: from onnx.helper import make_model [as 別名]
def test_simple_graph():
node1 = make_node('Add', ['A', 'B'], ['X'], name='add_node1')
node2 = make_node('Add', ['X', 'C'], ['Y'], name='add_node2')
graph = make_graph([node1, node2], 'test_graph',
[make_tensor_value_info('A', onnx.TensorProto.FLOAT, [1]),
make_tensor_value_info('B', onnx.TensorProto.FLOAT, [1]),
make_tensor_value_info('C', onnx.TensorProto.FLOAT, [1])],
[make_tensor_value_info('Y', onnx.TensorProto.FLOAT, [1])])
model = make_model(graph, producer_name='ngraph ONNXImporter')
ng_model_function = import_onnx_model(model)
runtime = get_runtime()
computation = runtime.computation(ng_model_function)
assert np.array_equal(computation(1, 2, 3)[0], np.array([6.0], dtype=np.float32))
assert np.array_equal(computation(4, 5, 6)[0], np.array([15.0], dtype=np.float32))
示例6: test_identity
# 需要導入模塊: from onnx import helper [as 別名]
# 或者: from onnx.helper import make_model [as 別名]
def test_identity():
np.random.seed(133391)
shape = [2, 4]
input_data = np.random.randn(*shape).astype(np.float32)
identity_node = make_node('Identity', inputs=['x'], outputs=['y'])
ng_results = run_node(identity_node, [input_data])
assert np.array_equal(ng_results, [input_data])
node1 = make_node('Add', inputs=['A', 'B'], outputs=['add1'], name='add_node1')
node2 = make_node('Identity', inputs=['add1'], outputs=['identity1'], name='identity_node1')
node3 = make_node('Abs', inputs=['identity1'], outputs=['Y'], name='abs_node1')
graph = make_graph([node1, node2, node3], 'test_graph',
[make_tensor_value_info('A', onnx.TensorProto.FLOAT, shape),
make_tensor_value_info('B', onnx.TensorProto.FLOAT, shape)],
[make_tensor_value_info('Y', onnx.TensorProto.FLOAT, shape)])
model = make_model(graph, producer_name='ngraph ONNX Importer')
ng_model_function = import_onnx_model(model)
runtime = get_runtime()
computation = runtime.computation(ng_model_function)
ng_results = computation(input_data, input_data)
expected_result = np.abs(input_data + input_data)
assert np.array_equal(ng_results[0], expected_result)
示例7: make_onnx_model_for_gemm_op
# 需要導入模塊: from onnx import helper [as 別名]
# 或者: from onnx.helper import make_model [as 別名]
def make_onnx_model_for_gemm_op(input_a, input_b, input_c, **kwargs):
input_a_for_output = input_a
input_b_for_output = input_b
if kwargs.get('transA'):
input_a_for_output = input_a.T
if kwargs.get('transB'):
input_b_for_output = input_b.T
output_shape = np.dot(input_a_for_output, input_b_for_output).shape
node = make_node('Gemm', ['A', 'B', 'C'], ['Y'], name='test_node', **kwargs)
graph = make_graph([node], 'test_graph',
[make_tensor_value_info('A', onnx.TensorProto.FLOAT, input_a.shape),
make_tensor_value_info('B', onnx.TensorProto.FLOAT, input_b.shape),
make_tensor_value_info('C', onnx.TensorProto.FLOAT, input_c.shape)],
[make_tensor_value_info('Y', onnx.TensorProto.FLOAT, output_shape)])
model = make_model(graph, producer_name='ngraph ONNXImporter')
return model
示例8: generate_model
# 需要導入模塊: from onnx import helper [as 別名]
# 或者: from onnx.helper import make_model [as 別名]
def generate_model(self, inputs, outputs, graph, model) -> 'ModelProto':
# assign param names
self.param2name = {id(p): 'param' + n.replace('/', '_')
for n, p in model.namedparams()}
for p, n in self.param2name.items():
assigned_names.append(n)
# assign onnx name
assign_onnx_name(graph)
graph_ = self.generate_graph(inputs, outputs, graph, None, True)
onnx_model = oh.make_model(
graph_, producer_name="elichika", producer_version="0.1")
return onnx_model
示例9: test_relu_node_inplace
# 需要導入模塊: from onnx import helper [as 別名]
# 或者: from onnx.helper import make_model [as 別名]
def test_relu_node_inplace(self):
X = np.random.randn(3, 2).astype(np.float32)
Y_ref = np.clip(X, 0, np.inf)
node_def = helper.make_node("Relu", ["X"], ["X1"])
graph_def = helper.make_graph(
[node_def],
name="test",
inputs=[helper.make_tensor_value_info("X", TensorProto.FLOAT, [3, 2])],
outputs=[
helper.make_tensor_value_info("X1", TensorProto.FLOAT, [3, 2])
])
tf_rep = prepare(helper.make_model(graph_def))
output = tf_rep.run({"X": X})
np.testing.assert_almost_equal(output.X1, Y_ref)
示例10: test_attribute_wrapper
# 需要導入模塊: from onnx import helper [as 別名]
# 或者: from onnx.helper import make_model [as 別名]
def test_attribute_wrapper():
def attribute_value_test(attribute_value):
node = make_node('Abs', ['X'], [], name='test_node', test_attribute=attribute_value)
model = make_model(make_graph([node], 'test_graph', [
make_tensor_value_info('X', onnx.TensorProto.FLOAT, [1, 2]),
], []), producer_name='ngraph')
wrapped_attribute = ModelWrapper(model).graph.node[0].get_attribute('test_attribute')
return wrapped_attribute.get_value()
tensor = make_tensor('test_tensor', onnx.TensorProto.FLOAT, [1], [1])
assert attribute_value_test(1) == 1
assert type(attribute_value_test(1)) == np.long
assert attribute_value_test(1.0) == 1.0
assert type(attribute_value_test(1.0)) == np.float
assert attribute_value_test('test') == 'test'
assert attribute_value_test(tensor)._proto == tensor
assert attribute_value_test([1, 2, 3]) == [1, 2, 3]
assert attribute_value_test([1.0, 2.0, 3.0]) == [1.0, 2.0, 3.0]
assert attribute_value_test(['test1', 'test2']) == ['test1', 'test2']
assert attribute_value_test([tensor, tensor])[1]._proto == tensor
示例11: convert_and_calculate
# 需要導入模塊: from onnx import helper [as 別名]
# 或者: from onnx.helper import make_model [as 別名]
def convert_and_calculate(onnx_node, data_inputs, data_outputs):
# type: (NodeProto, List[np.ndarray], List[np.ndarray]) -> List[np.ndarray]
"""
Convert ONNX node to ngraph node and perform computation on input data.
:param onnx_node: ONNX NodeProto describing a computation node
:param data_inputs: list of numpy ndarrays with input data
:param data_outputs: list of numpy ndarrays with expected output data
:return: list of numpy ndarrays with computed output
"""
transformer = get_transformer()
input_tensors = [make_tensor_value_info(name, onnx.TensorProto.FLOAT, value.shape)
for name, value in zip(onnx_node.input, data_inputs)]
output_tensors = [make_tensor_value_info(name, onnx.TensorProto.FLOAT, value.shape)
for name, value in zip(onnx_node.output, data_outputs)]
graph = make_graph([onnx_node], 'test_graph', input_tensors, output_tensors)
model = make_model(graph, producer_name='ngraph ONNXImporter')
ng_results = []
for ng_model in import_onnx_model(model):
computation = transformer.computation(ng_model['output'], *ng_model['inputs'])
ng_results.append(computation(*data_inputs))
return ng_results
示例12: _test_power_iteration
# 需要導入模塊: from onnx import helper [as 別名]
# 或者: from onnx.helper import make_model [as 別名]
def _test_power_iteration(x_shape, y_shape):
if isinstance(y_shape, int):
y_shape = [y_shape]
x = np.random.uniform(size=x_shape).astype(np.float32)
y = np.random.uniform(size=y_shape).astype(np.float32)
np_res = np.power(x, y).astype(np.float32)
res = helper.make_node("Pow", ['x', 'y'], ['out'])
graph = helper.make_graph([res],
'power_test',
inputs = [helper.make_tensor_value_info("x",
TensorProto.FLOAT, list(x_shape)),
helper.make_tensor_value_info("y",
TensorProto.FLOAT, list(y_shape))],
outputs = [helper.make_tensor_value_info("out",
TensorProto.FLOAT, list(np_res.shape))])
model = helper.make_model(graph, producer_name='power_test')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(model, [x, y], target, ctx, np_res.shape)
np.testing.assert_allclose(np_res, tvm_out, rtol=1e-5, atol=1e-5)
示例13: test_squeeze
# 需要導入模塊: from onnx import helper [as 別名]
# 或者: from onnx.helper import make_model [as 別名]
def test_squeeze():
in_shape = (1, 3, 1, 3, 1, 1)
out_shape = (3, 3)
y = helper.make_node("Squeeze", ['in'], ['out'], axes=[0, 2, 4, 5])
graph = helper.make_graph([y],
'squeeze_test',
inputs = [helper.make_tensor_value_info("in",
TensorProto.FLOAT, list(in_shape))],
outputs = [helper.make_tensor_value_info("out",
TensorProto.FLOAT, list(out_shape))])
model = helper.make_model(graph, producer_name='squeeze_test')
for target, ctx in ctx_list():
x = np.random.uniform(size=in_shape).astype('float32')
tvm_out = get_tvm_output(model, x, target, ctx, out_shape, 'float32')
np.testing.assert_allclose(out_shape, tvm_out.shape)
示例14: test_unsqueeze
# 需要導入模塊: from onnx import helper [as 別名]
# 或者: from onnx.helper import make_model [as 別名]
def test_unsqueeze():
in_shape = (3, 3)
axis = (0, 3, 4)
out_shape = (1, 3, 3, 1, 1)
y = helper.make_node("Unsqueeze", ['in'], ['out'], axes=list(axis))
graph = helper.make_graph([y],
'squeeze_test',
inputs = [helper.make_tensor_value_info("in",
TensorProto.FLOAT, list(in_shape))],
outputs = [helper.make_tensor_value_info("out",
TensorProto.FLOAT, list(out_shape))])
model = helper.make_model(graph, producer_name='squeeze_test')
for target, ctx in ctx_list():
x = np.random.uniform(size=in_shape).astype('float32')
tvm_out = get_tvm_output(model, x, target, ctx, out_shape, 'float32')
np.testing.assert_allclose(out_shape, tvm_out.shape)
示例15: _test_slice_iteration
# 需要導入模塊: from onnx import helper [as 別名]
# 或者: from onnx.helper import make_model [as 別名]
def _test_slice_iteration(indata, outdata, starts, ends, axes=None):
if axes:
y = helper.make_node("Slice", ['in'], ['out'], axes=axes, starts=starts, ends=ends)
else:
y = helper.make_node("Slice", ['in'], ['out'], starts=starts, ends=ends)
graph = helper.make_graph([y],
'slice_test',
inputs = [helper.make_tensor_value_info("in",
TensorProto.FLOAT, list(indata.shape))],
outputs = [helper.make_tensor_value_info("out",
TensorProto.FLOAT, list(outdata.shape))])
model = helper.make_model(graph, producer_name='slice_test')
for target, ctx in ctx_list():
tvm_out = get_tvm_output(model, indata, target, ctx, outdata.shape, 'float32')
np.testing.assert_allclose(outdata, tvm_out)