當前位置: 首頁>>代碼示例>>Python>>正文


Python onmt.opts方法代碼示例

本文整理匯總了Python中onmt.opts方法的典型用法代碼示例。如果您正苦於以下問題:Python onmt.opts方法的具體用法?Python onmt.opts怎麽用?Python onmt.opts使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在onmt的用法示例。


在下文中一共展示了onmt.opts方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: parse_opt

# 需要導入模塊: import onmt [as 別名]
# 或者: from onmt import opts [as 別名]
def parse_opt(self, opt):
        """Parse the option set passed by the user using `onmt.opts`
           Args:
               opt: (dict) options passed by the user

           Returns:
               opt: (Namespace) full set of options for the Translator
        """
        prec_argv = sys.argv
        sys.argv = sys.argv[:1]
        parser = argparse.ArgumentParser()
        onmt.opts.translate_opts(parser)

        opt['model'] = os.path.join(self.model_root, opt['model'])
        opt['src'] = "dummy_src"

        for (k, v) in opt.items():
            sys.argv += ['-%s' % k, str(v)]

        opt = parser.parse_args()
        opt.cuda = opt.gpu > -1

        sys.argv = prec_argv
        return opt 
開發者ID:xiadingZ,項目名稱:video-caption-openNMT.pytorch,代碼行數:26,代碼來源:TranslationServer.py

示例2: main

# 需要導入模塊: import onmt [as 別名]
# 或者: from onmt import opts [as 別名]
def main():
    dummy_parser = argparse.ArgumentParser(description='train.py')
    onmt.opts.model_opts(dummy_parser)
    dummy_opt = dummy_parser.parse_known_args([])[0]
    opt = parser.parse_args()
    opt.cuda = opt.gpu > -1
    if opt.cuda:
        torch.cuda.set_device(opt.gpu)

    # Add in default model arguments, possibly added since training.
    checkpoint = torch.load(opt.model,
                            map_location=lambda storage, loc: storage)
    model_opt = checkpoint['opt']
    src_dict = checkpoint['vocab'][1][1]
    tgt_dict = checkpoint['vocab'][0][1]

    fields = onmt.io.load_fields_from_vocab(checkpoint['vocab'])

    model_opt = checkpoint['opt']
    for arg in dummy_opt.__dict__:
        if arg not in model_opt:
            model_opt.__dict__[arg] = dummy_opt.__dict__[arg]

    model = onmt.ModelConstructor.make_base_model(
        model_opt, fields, use_gpu(opt), checkpoint)
    encoder = model.encoder
    decoder = model.decoder

    encoder_embeddings = encoder.embeddings.word_lut.weight.data.tolist()
    decoder_embeddings = decoder.embeddings.word_lut.weight.data.tolist()

    print("Writing source embeddings")
    write_embeddings(opt.output_dir + "/src_embeddings.txt", src_dict,
                     encoder_embeddings)

    print("Writing target embeddings")
    write_embeddings(opt.output_dir + "/tgt_embeddings.txt", tgt_dict,
                     decoder_embeddings)

    print('... done.')
    print('Converting model...') 
開發者ID:xiadingZ,項目名稱:video-caption-openNMT.pytorch,代碼行數:43,代碼來源:extract_embeddings.py

示例3: main

# 需要導入模塊: import onmt [as 別名]
# 或者: from onmt import opts [as 別名]
def main():
    dummy_parser = argparse.ArgumentParser(description='train.py')
    onmt.opts.model_opts(dummy_parser)
    dummy_opt = dummy_parser.parse_known_args([])[0]
    opt = parser.parse_args()
    opt.cuda = opt.gpu > -1
    if opt.cuda:
        torch.cuda.set_device(opt.gpu)

    # Add in default model arguments, possibly added since training.
    checkpoint = torch.load(opt.model,
                            map_location=lambda storage, loc: storage)
    model_opt = checkpoint['opt']

    src_dict, tgt_dict = None, None

    # the vocab object is a list of tuple (name, torchtext.Vocab)
    # we iterate over this list and associate vocabularies based on the name
    for vocab in checkpoint['vocab']:
        if vocab[0] == 'src':
            src_dict = vocab[1]
        if vocab[0] == 'tgt':
            tgt_dict = vocab[1]
    assert src_dict is not None and tgt_dict is not None

    fields = onmt.inputters.load_fields_from_vocab(checkpoint['vocab'])

    model_opt = checkpoint['opt']
    for arg in dummy_opt.__dict__:
        if arg not in model_opt:
            model_opt.__dict__[arg] = dummy_opt.__dict__[arg]

    model = onmt.model_builder.build_base_model(
        model_opt, fields, use_gpu(opt), checkpoint)
    encoder = model.encoder
    decoder = model.decoder

    encoder_embeddings = encoder.embeddings.word_lut.weight.data.tolist()
    decoder_embeddings = decoder.embeddings.word_lut.weight.data.tolist()

    logger.info("Writing source embeddings")
    write_embeddings(opt.output_dir + "/src_embeddings.txt", src_dict,
                     encoder_embeddings)

    logger.info("Writing target embeddings")
    write_embeddings(opt.output_dir + "/tgt_embeddings.txt", tgt_dict,
                     decoder_embeddings)

    logger.info('... done.')
    logger.info('Converting model...') 
開發者ID:lizekang,項目名稱:ITDD,代碼行數:52,代碼來源:extract_embeddings.py

示例4: main

# 需要導入模塊: import onmt [as 別名]
# 或者: from onmt import opts [as 別名]
def main():
    dummy_parser = argparse.ArgumentParser(description='train.py')
    onmt.opts.model_opts(dummy_parser)
    dummy_opt = dummy_parser.parse_known_args([])[0]
    opt = parser.parse_args()
    opt.cuda = opt.gpu > -1
    if opt.cuda:
        torch.cuda.set_device(opt.gpu)

    # Add in default model arguments, possibly added since training.
    checkpoint = torch.load(opt.model,
                            map_location=lambda storage, loc: storage)
    model_opt = checkpoint['opt']

    vocab = checkpoint['vocab']
    if inputters.old_style_vocab(vocab):
        fields = onmt.inputters.load_old_vocab(vocab)
    else:
        fields = vocab
    src_dict = fields['src'].base_field.vocab  # assumes src is text
    tgt_dict = fields['tgt'].base_field.vocab

    model_opt = checkpoint['opt']
    for arg in dummy_opt.__dict__:
        if arg not in model_opt:
            model_opt.__dict__[arg] = dummy_opt.__dict__[arg]

    model = onmt.model_builder.build_base_model(
        model_opt, fields, use_gpu(opt), checkpoint)
    encoder = model.encoder
    decoder = model.decoder

    encoder_embeddings = encoder.embeddings.word_lut.weight.data.tolist()
    decoder_embeddings = decoder.embeddings.word_lut.weight.data.tolist()

    logger.info("Writing source embeddings")
    write_embeddings(opt.output_dir + "/src_embeddings.txt", src_dict,
                     encoder_embeddings)

    logger.info("Writing target embeddings")
    write_embeddings(opt.output_dir + "/tgt_embeddings.txt", tgt_dict,
                     decoder_embeddings)

    logger.info('... done.')
    logger.info('Converting model...') 
開發者ID:OpenNMT,項目名稱:OpenNMT-py,代碼行數:47,代碼來源:extract_embeddings.py


注:本文中的onmt.opts方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。