本文整理匯總了Python中onmt.opts方法的典型用法代碼示例。如果您正苦於以下問題:Python onmt.opts方法的具體用法?Python onmt.opts怎麽用?Python onmt.opts使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類onmt
的用法示例。
在下文中一共展示了onmt.opts方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: parse_opt
# 需要導入模塊: import onmt [as 別名]
# 或者: from onmt import opts [as 別名]
def parse_opt(self, opt):
"""Parse the option set passed by the user using `onmt.opts`
Args:
opt: (dict) options passed by the user
Returns:
opt: (Namespace) full set of options for the Translator
"""
prec_argv = sys.argv
sys.argv = sys.argv[:1]
parser = argparse.ArgumentParser()
onmt.opts.translate_opts(parser)
opt['model'] = os.path.join(self.model_root, opt['model'])
opt['src'] = "dummy_src"
for (k, v) in opt.items():
sys.argv += ['-%s' % k, str(v)]
opt = parser.parse_args()
opt.cuda = opt.gpu > -1
sys.argv = prec_argv
return opt
示例2: main
# 需要導入模塊: import onmt [as 別名]
# 或者: from onmt import opts [as 別名]
def main():
dummy_parser = argparse.ArgumentParser(description='train.py')
onmt.opts.model_opts(dummy_parser)
dummy_opt = dummy_parser.parse_known_args([])[0]
opt = parser.parse_args()
opt.cuda = opt.gpu > -1
if opt.cuda:
torch.cuda.set_device(opt.gpu)
# Add in default model arguments, possibly added since training.
checkpoint = torch.load(opt.model,
map_location=lambda storage, loc: storage)
model_opt = checkpoint['opt']
src_dict = checkpoint['vocab'][1][1]
tgt_dict = checkpoint['vocab'][0][1]
fields = onmt.io.load_fields_from_vocab(checkpoint['vocab'])
model_opt = checkpoint['opt']
for arg in dummy_opt.__dict__:
if arg not in model_opt:
model_opt.__dict__[arg] = dummy_opt.__dict__[arg]
model = onmt.ModelConstructor.make_base_model(
model_opt, fields, use_gpu(opt), checkpoint)
encoder = model.encoder
decoder = model.decoder
encoder_embeddings = encoder.embeddings.word_lut.weight.data.tolist()
decoder_embeddings = decoder.embeddings.word_lut.weight.data.tolist()
print("Writing source embeddings")
write_embeddings(opt.output_dir + "/src_embeddings.txt", src_dict,
encoder_embeddings)
print("Writing target embeddings")
write_embeddings(opt.output_dir + "/tgt_embeddings.txt", tgt_dict,
decoder_embeddings)
print('... done.')
print('Converting model...')
示例3: main
# 需要導入模塊: import onmt [as 別名]
# 或者: from onmt import opts [as 別名]
def main():
dummy_parser = argparse.ArgumentParser(description='train.py')
onmt.opts.model_opts(dummy_parser)
dummy_opt = dummy_parser.parse_known_args([])[0]
opt = parser.parse_args()
opt.cuda = opt.gpu > -1
if opt.cuda:
torch.cuda.set_device(opt.gpu)
# Add in default model arguments, possibly added since training.
checkpoint = torch.load(opt.model,
map_location=lambda storage, loc: storage)
model_opt = checkpoint['opt']
src_dict, tgt_dict = None, None
# the vocab object is a list of tuple (name, torchtext.Vocab)
# we iterate over this list and associate vocabularies based on the name
for vocab in checkpoint['vocab']:
if vocab[0] == 'src':
src_dict = vocab[1]
if vocab[0] == 'tgt':
tgt_dict = vocab[1]
assert src_dict is not None and tgt_dict is not None
fields = onmt.inputters.load_fields_from_vocab(checkpoint['vocab'])
model_opt = checkpoint['opt']
for arg in dummy_opt.__dict__:
if arg not in model_opt:
model_opt.__dict__[arg] = dummy_opt.__dict__[arg]
model = onmt.model_builder.build_base_model(
model_opt, fields, use_gpu(opt), checkpoint)
encoder = model.encoder
decoder = model.decoder
encoder_embeddings = encoder.embeddings.word_lut.weight.data.tolist()
decoder_embeddings = decoder.embeddings.word_lut.weight.data.tolist()
logger.info("Writing source embeddings")
write_embeddings(opt.output_dir + "/src_embeddings.txt", src_dict,
encoder_embeddings)
logger.info("Writing target embeddings")
write_embeddings(opt.output_dir + "/tgt_embeddings.txt", tgt_dict,
decoder_embeddings)
logger.info('... done.')
logger.info('Converting model...')
示例4: main
# 需要導入模塊: import onmt [as 別名]
# 或者: from onmt import opts [as 別名]
def main():
dummy_parser = argparse.ArgumentParser(description='train.py')
onmt.opts.model_opts(dummy_parser)
dummy_opt = dummy_parser.parse_known_args([])[0]
opt = parser.parse_args()
opt.cuda = opt.gpu > -1
if opt.cuda:
torch.cuda.set_device(opt.gpu)
# Add in default model arguments, possibly added since training.
checkpoint = torch.load(opt.model,
map_location=lambda storage, loc: storage)
model_opt = checkpoint['opt']
vocab = checkpoint['vocab']
if inputters.old_style_vocab(vocab):
fields = onmt.inputters.load_old_vocab(vocab)
else:
fields = vocab
src_dict = fields['src'].base_field.vocab # assumes src is text
tgt_dict = fields['tgt'].base_field.vocab
model_opt = checkpoint['opt']
for arg in dummy_opt.__dict__:
if arg not in model_opt:
model_opt.__dict__[arg] = dummy_opt.__dict__[arg]
model = onmt.model_builder.build_base_model(
model_opt, fields, use_gpu(opt), checkpoint)
encoder = model.encoder
decoder = model.decoder
encoder_embeddings = encoder.embeddings.word_lut.weight.data.tolist()
decoder_embeddings = decoder.embeddings.word_lut.weight.data.tolist()
logger.info("Writing source embeddings")
write_embeddings(opt.output_dir + "/src_embeddings.txt", src_dict,
encoder_embeddings)
logger.info("Writing target embeddings")
write_embeddings(opt.output_dir + "/tgt_embeddings.txt", tgt_dict,
decoder_embeddings)
logger.info('... done.')
logger.info('Converting model...')