當前位置: 首頁>>代碼示例>>Python>>正文


Python modules.Embeddings方法代碼示例

本文整理匯總了Python中onmt.modules.Embeddings方法的典型用法代碼示例。如果您正苦於以下問題:Python modules.Embeddings方法的具體用法?Python modules.Embeddings怎麽用?Python modules.Embeddings使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在onmt.modules的用法示例。


在下文中一共展示了modules.Embeddings方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: build_encoder

# 需要導入模塊: from onmt import modules [as 別名]
# 或者: from onmt.modules import Embeddings [as 別名]
def build_encoder(opt, embeddings):
    """
    Various encoder dispatcher function.
    Args:
        opt: the option in current environment.
        embeddings (Embeddings): vocab embeddings for this encoder.
    """
    if opt.encoder_type == "transformer":
        return TransformerEncoder(opt.enc_layers, opt.rnn_size,
                                  opt.heads, opt.transformer_ff,
                                  opt.dropout, embeddings)
    elif opt.encoder_type == "cnn":
        return CNNEncoder(opt.enc_layers, opt.rnn_size,
                          opt.cnn_kernel_width,
                          opt.dropout, embeddings)
    elif opt.encoder_type == "mean":
        return MeanEncoder(opt.enc_layers, embeddings)
    else:
        # "rnn" or "brnn"
        return RNNEncoder(opt.rnn_type, opt.brnn, opt.enc_layers,
                          opt.rnn_size, opt.dropout, embeddings,
                          opt.bridge) 
開發者ID:InitialBug,項目名稱:BiSET,代碼行數:24,代碼來源:model_builder.py

示例2: build_embeddings

# 需要導入模塊: from onmt import modules [as 別名]
# 或者: from onmt.modules import Embeddings [as 別名]
def build_embeddings(opt, word_field, feat_fields, for_encoder=True):
    """
    Args:
        opt: the option in current environment.
        word_dict(Vocab): words dictionary.
        feature_dicts([Vocab], optional): a list of feature dictionary.
        for_encoder(bool): build Embeddings for encoder or decoder?
    """
    emb_dim = opt.src_word_vec_size if for_encoder else opt.tgt_word_vec_size

    word_padding_idx = word_field.vocab.stoi[word_field.pad_token]
    num_word_embeddings = len(word_field.vocab)

    feat_pad_indices = [ff.vocab.stoi[ff.pad_token] for ff in feat_fields]
    num_feat_embeddings = [len(ff.vocab) for ff in feat_fields]

    emb = Embeddings(
        word_vec_size=emb_dim,
        position_encoding=opt.position_encoding,
        feat_merge=opt.feat_merge,
        feat_vec_exponent=opt.feat_vec_exponent,
        feat_vec_size=opt.feat_vec_size,
        dropout=opt.dropout,
        word_padding_idx=word_padding_idx,
        feat_padding_idx=feat_pad_indices,
        word_vocab_size=num_word_embeddings,
        feat_vocab_sizes=num_feat_embeddings,
        sparse=opt.optim == "sparseadam"
    )
    return emb 
開發者ID:lizekang,項目名稱:ITDD,代碼行數:32,代碼來源:model_builder.py

示例3: build_encoder

# 需要導入模塊: from onmt import modules [as 別名]
# 或者: from onmt.modules import Embeddings [as 別名]
def build_encoder(opt, embeddings):
    """
    Various encoder dispatcher function.
    Args:
        opt: the option in current environment.
        embeddings (Embeddings): vocab embeddings for this encoder.
    """
    if opt.encoder_type == "transformer":
        encoder = TransformerEncoder(
            opt.enc_layers,
            opt.enc_rnn_size,
            opt.heads,
            opt.transformer_ff,
            opt.dropout,
            embeddings
        )
    elif opt.encoder_type == "cnn":
        encoder = CNNEncoder(
            opt.enc_layers,
            opt.enc_rnn_size,
            opt.cnn_kernel_width,
            opt.dropout,
            embeddings)
    elif opt.encoder_type == "mean":
        encoder = MeanEncoder(opt.enc_layers, embeddings)
    else:
        encoder = RNNEncoder(
            opt.rnn_type,
            opt.brnn,
            opt.enc_layers,
            opt.enc_rnn_size,
            opt.dropout,
            embeddings,
            opt.bridge
        )
    return encoder 
開發者ID:lizekang,項目名稱:ITDD,代碼行數:38,代碼來源:model_builder.py

示例4: build_embeddings

# 需要導入模塊: from onmt import modules [as 別名]
# 或者: from onmt.modules import Embeddings [as 別名]
def build_embeddings(opt, text_field, for_encoder=True):
    """
    Args:
        opt: the option in current environment.
        text_field(TextMultiField): word and feats field.
        for_encoder(bool): build Embeddings for encoder or decoder?
    """
    emb_dim = opt.src_word_vec_size if for_encoder else opt.tgt_word_vec_size

    pad_indices = [f.vocab.stoi[f.pad_token] for _, f in text_field]

    word_padding_idx, feat_pad_indices = pad_indices[0], pad_indices[1:]

    num_embs = [len(f.vocab) for _, f in text_field]
    num_word_embeddings, num_feat_embeddings = num_embs[0], num_embs[1:]

    fix_word_vecs = opt.fix_word_vecs_enc if for_encoder \
        else opt.fix_word_vecs_dec

    pos_enc_learned = opt.position_encoding_learned_enc if for_encoder else opt.position_encoding_learned_dec
    GPT_representation_mode = opt.GPT_representation_mode if opt.GPT_representation_loc == 'both' or (opt.GPT_representation_loc == 'src' and for_encoder) or (opt.GPT_representation_loc == 'tgt' and not for_encoder) else 'none'

    emb = Embeddings(
        word_vec_size=emb_dim,
        position_encoding=opt.position_encoding,
        position_encoding_learned=pos_enc_learned,
        position_encoding_ctxsize=opt.position_encoding_ctxsize,
        feat_merge=opt.feat_merge,
        feat_vec_exponent=opt.feat_vec_exponent,
        feat_vec_size=opt.feat_vec_size,
        dropout=opt.dropout,
        word_padding_idx=word_padding_idx,
        feat_padding_idx=feat_pad_indices,
        word_vocab_size=num_word_embeddings,
        feat_vocab_sizes=num_feat_embeddings,
        sparse=opt.optim == "sparseadam",
        fix_word_vecs=fix_word_vecs,
        GPT_representation_mode=GPT_representation_mode,
        GPT_representation_tgt=not for_encoder
    )
    return emb 
開發者ID:harvardnlp,項目名稱:encoder-agnostic-adaptation,代碼行數:43,代碼來源:model_builder.py

示例5: build_encoder

# 需要導入模塊: from onmt import modules [as 別名]
# 或者: from onmt.modules import Embeddings [as 別名]
def build_encoder(opt, embeddings):
    """
    Various encoder dispatcher function.
    Args:
        opt: the option in current environment.
        embeddings (Embeddings): vocab embeddings for this encoder.
    """
    enc_type = opt.encoder_type if opt.model_type == "text" else opt.model_type
    return str2enc[enc_type].from_opt(opt, embeddings) 
開發者ID:harvardnlp,項目名稱:encoder-agnostic-adaptation,代碼行數:11,代碼來源:model_builder.py

示例6: build_decoder

# 需要導入模塊: from onmt import modules [as 別名]
# 或者: from onmt.modules import Embeddings [as 別名]
def build_decoder(opt, embeddings):
    """
    Various decoder dispatcher function.
    Args:
        opt: the option in current environment.
        embeddings (Embeddings): vocab embeddings for this decoder.
    """
    dec_type = "ifrnn" if opt.decoder_type == "rnn" and opt.input_feed \
               else opt.decoder_type
    return str2dec[dec_type].from_opt(opt, embeddings) 
開發者ID:harvardnlp,項目名稱:encoder-agnostic-adaptation,代碼行數:12,代碼來源:model_builder.py

示例7: build_encoder

# 需要導入模塊: from onmt import modules [as 別名]
# 或者: from onmt.modules import Embeddings [as 別名]
def build_encoder(opt, embeddings):
    """
    Various encoder dispatcher function.
    Args:
        opt: the option in current environment.
        embeddings (Embeddings): vocab embeddings for this encoder.
    """
    enc_type = opt.encoder_type if opt.model_type == "text" \
        or opt.model_type == "vec" else opt.model_type
    return str2enc[enc_type].from_opt(opt, embeddings) 
開發者ID:OpenNMT,項目名稱:OpenNMT-py,代碼行數:12,代碼來源:model_builder.py

示例8: build_encoder

# 需要導入模塊: from onmt import modules [as 別名]
# 或者: from onmt.modules import Embeddings [as 別名]
def build_encoder(opt, embeddings):
    """
    Various encoder dispatcher function.
    Args:
        opt: the option in current environment.
        embeddings (Embeddings): vocab embeddings for this encoder.
    """
    enc_type = opt.encoder_type if opt.model_type == "text" \
        or opt.model_type == "vec" or opt.model_type == "keyphrase" \
        else opt.model_type
    return str2enc[enc_type].from_opt(opt, embeddings) 
開發者ID:memray,項目名稱:OpenNMT-kpg-release,代碼行數:13,代碼來源:model_builder.py

示例9: build_embeddings

# 需要導入模塊: from onmt import modules [as 別名]
# 或者: from onmt.modules import Embeddings [as 別名]
def build_embeddings(opt, word_dict, feature_dicts, for_encoder=True):
    """
    Build an Embeddings instance.
    Args:
        opt: the option in current environment.
        word_dict(Vocab): words dictionary.
        feature_dicts([Vocab], optional): a list of feature dictionary.
        for_encoder(bool): build Embeddings for encoder or decoder?
    """
    if for_encoder:
        embedding_dim = opt.src_word_vec_size
    else:
        embedding_dim = opt.tgt_word_vec_size

    word_padding_idx = word_dict.stoi[inputters.PAD_WORD]
    num_word_embeddings = len(word_dict)

    feats_padding_idx = [feat_dict.stoi[inputters.PAD_WORD]
                         for feat_dict in feature_dicts]
    num_feat_embeddings = [len(feat_dict) for feat_dict in
                           feature_dicts]

    return Embeddings(word_vec_size=embedding_dim,
                      position_encoding=opt.position_encoding,
                      feat_merge=opt.feat_merge,
                      feat_vec_exponent=opt.feat_vec_exponent,
                      feat_vec_size=opt.feat_vec_size,
                      dropout=opt.dropout,
                      word_padding_idx=word_padding_idx,
                      feat_padding_idx=feats_padding_idx,
                      word_vocab_size=num_word_embeddings,
                      feat_vocab_sizes=num_feat_embeddings,
                      sparse=opt.optim == "sparseadam") 
開發者ID:InitialBug,項目名稱:BiSET,代碼行數:35,代碼來源:model_builder.py

示例10: build_decoder

# 需要導入模塊: from onmt import modules [as 別名]
# 或者: from onmt.modules import Embeddings [as 別名]
def build_decoder(opt, embeddings):
    """
    Various decoder dispatcher function.
    Args:
        opt: the option in current environment.
        embeddings (Embeddings): vocab embeddings for this decoder.
    """
    if opt.decoder_type == "transformer":
        return TransformerDecoder(opt.dec_layers, opt.rnn_size,
                                  opt.heads, opt.transformer_ff,
                                  opt.global_attention, opt.copy_attn,
                                  opt.self_attn_type,
                                  opt.dropout, embeddings)
    elif opt.decoder_type == "cnn":
        return CNNDecoder(opt.dec_layers, opt.rnn_size,
                          opt.global_attention, opt.copy_attn,
                          opt.cnn_kernel_width, opt.dropout,
                          embeddings)
    elif opt.input_feed:
        return InputFeedRNNDecoder(opt.rnn_type, opt.brnn,
                                   opt.dec_layers, opt.rnn_size,
                                   opt.global_attention,
                                   opt.global_attention_function,
                                   opt.coverage_attn,
                                   opt.context_gate,
                                   opt.copy_attn,
                                   opt.dropout,
                                   embeddings,
                                   opt.reuse_copy_attn)
    else:
        return StdRNNDecoder(opt.rnn_type, opt.brnn,
                             opt.dec_layers, opt.rnn_size,
                             opt.global_attention,
                             opt.global_attention_function,
                             opt.coverage_attn,
                             opt.context_gate,
                             opt.copy_attn,
                             opt.dropout,
                             embeddings,
                             opt.reuse_copy_attn) 
開發者ID:InitialBug,項目名稱:BiSET,代碼行數:42,代碼來源:model_builder.py

示例11: build_decoder

# 需要導入模塊: from onmt import modules [as 別名]
# 或者: from onmt.modules import Embeddings [as 別名]
def build_decoder(opt, embeddings):
    """
    Various decoder dispatcher function.
    Args:
        opt: the option in current environment.
        embeddings (Embeddings): vocab embeddings for this decoder.
    """
    if opt.decoder_type == "transformer":
        decoder = TransformerDecoder(
            opt.dec_layers,
            opt.dec_rnn_size,
            opt.heads,
            opt.transformer_ff,
            opt.global_attention,
            opt.copy_attn,
            opt.self_attn_type,
            opt.dropout,
            embeddings
        )
    elif opt.decoder_type == "cnn":
        decoder = CNNDecoder(
            opt.dec_layers,
            opt.dec_rnn_size,
            opt.global_attention,
            opt.copy_attn,
            opt.cnn_kernel_width,
            opt.dropout,
            embeddings
        )
    else:
        dec_class = InputFeedRNNDecoder if opt.input_feed else StdRNNDecoder
        decoder = dec_class(
            opt.rnn_type,
            opt.brnn,
            opt.dec_layers,
            opt.dec_rnn_size,
            opt.global_attention,
            opt.global_attention_function,
            opt.coverage_attn,
            opt.context_gate,
            opt.copy_attn,
            opt.dropout,
            embeddings,
            opt.reuse_copy_attn
        )
    return decoder 
開發者ID:lizekang,項目名稱:ITDD,代碼行數:48,代碼來源:model_builder.py

示例12: build_embeddings

# 需要導入模塊: from onmt import modules [as 別名]
# 或者: from onmt.modules import Embeddings [as 別名]
def build_embeddings(opt, text_field, for_encoder=True):
    """
    Args:
        opt: the option in current environment.
        text_field(TextMultiField): word and feats field.
        for_encoder(bool): build Embeddings for encoder or decoder?
    """
    emb_dim = opt.src_word_vec_size if for_encoder else opt.tgt_word_vec_size

    if opt.model_type == "vec" and for_encoder:
        return VecEmbedding(
            opt.feat_vec_size,
            emb_dim,
            position_encoding=opt.position_encoding,
            dropout=(opt.dropout[0] if type(opt.dropout) is list
                     else opt.dropout),
        )

    pad_indices = [f.vocab.stoi[f.pad_token] for _, f in text_field]
    word_padding_idx, feat_pad_indices = pad_indices[0], pad_indices[1:]

    num_embs = [len(f.vocab) for _, f in text_field]
    num_word_embeddings, num_feat_embeddings = num_embs[0], num_embs[1:]

    fix_word_vecs = opt.fix_word_vecs_enc if for_encoder \
        else opt.fix_word_vecs_dec

    emb = Embeddings(
        word_vec_size=emb_dim,
        position_encoding=opt.position_encoding,
        feat_merge=opt.feat_merge,
        feat_vec_exponent=opt.feat_vec_exponent,
        feat_vec_size=opt.feat_vec_size,
        dropout=opt.dropout[0] if type(opt.dropout) is list else opt.dropout,
        word_padding_idx=word_padding_idx,
        feat_padding_idx=feat_pad_indices,
        word_vocab_size=num_word_embeddings,
        feat_vocab_sizes=num_feat_embeddings,
        sparse=opt.optim == "sparseadam",
        fix_word_vecs=fix_word_vecs
    )
    return emb 
開發者ID:OpenNMT,項目名稱:OpenNMT-py,代碼行數:44,代碼來源:model_builder.py


注:本文中的onmt.modules.Embeddings方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。