當前位置: 首頁>>代碼示例>>Python>>正文


Python modules.Elementwise方法代碼示例

本文整理匯總了Python中onmt.modules.Elementwise方法的典型用法代碼示例。如果您正苦於以下問題:Python modules.Elementwise方法的具體用法?Python modules.Elementwise怎麽用?Python modules.Elementwise使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在onmt.modules的用法示例。


在下文中一共展示了modules.Elementwise方法的1個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from onmt import modules [as 別名]
# 或者: from onmt.modules import Elementwise [as 別名]
def __init__(self, word_vec_size, position_encoding, feat_merge,
                 feat_vec_exponent, feat_vec_size, dropout,
                 word_padding_idx, feat_padding_idx,
                 word_vocab_size, feat_vocab_sizes=[]):

        self.word_padding_idx = word_padding_idx

        # Dimensions and padding for constructing the word embedding matrix
        vocab_sizes = [word_vocab_size]
        emb_dims = [word_vec_size]
        pad_indices = [word_padding_idx]

        # Dimensions and padding for feature embedding matrices
        # (these have no effect if feat_vocab_sizes is empty)
        if feat_merge == 'sum':
            feat_dims = [word_vec_size] * len(feat_vocab_sizes)
        elif feat_vec_size > 0:
            feat_dims = [feat_vec_size] * len(feat_vocab_sizes)
        else:
            feat_dims = [int(vocab ** feat_vec_exponent)
                         for vocab in feat_vocab_sizes]
        vocab_sizes.extend(feat_vocab_sizes)
        emb_dims.extend(feat_dims)
        pad_indices.extend(feat_padding_idx)

        # The embedding matrix look-up tables. The first look-up table
        # is for words. Subsequent ones are for features, if any exist.
        emb_params = zip(vocab_sizes, emb_dims, pad_indices)
        embeddings = [nn.Embedding(vocab, dim, padding_idx=pad)
                      for vocab, dim, pad in emb_params]
        emb_luts = Elementwise(feat_merge, embeddings)

        # The final output size of word + feature vectors. This can vary
        # from the word vector size if and only if features are defined.
        # This is the attribute you should access if you need to know
        # how big your embeddings are going to be.
        self.embedding_size = (sum(emb_dims) if feat_merge == 'concat'
                               else word_vec_size)

        # The sequence of operations that converts the input sequence
        # into a sequence of embeddings. At minimum this consists of
        # looking up the embeddings for each word and feature in the
        # input. Model parameters may require the sequence to contain
        # additional operations as well.
        super(Embeddings, self).__init__()
        self.make_embedding = nn.Sequential()
        self.make_embedding.add_module('emb_luts', emb_luts)

        if feat_merge == 'mlp':
            in_dim = sum(emb_dims)
            out_dim = word_vec_size
            mlp = nn.Sequential(BottleLinear(in_dim, out_dim), nn.ReLU())
            self.make_embedding.add_module('mlp', mlp)

        if position_encoding:
            pe = PositionalEncoding(dropout, self.embedding_size)
            self.make_embedding.add_module('pe', pe) 
開發者ID:antspy,項目名稱:quantized_distillation,代碼行數:59,代碼來源:Embeddings.py


注:本文中的onmt.modules.Elementwise方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。