本文整理匯總了Python中object_detection.utils.variables_helper.get_variables_available_in_checkpoint方法的典型用法代碼示例。如果您正苦於以下問題:Python variables_helper.get_variables_available_in_checkpoint方法的具體用法?Python variables_helper.get_variables_available_in_checkpoint怎麽用?Python variables_helper.get_variables_available_in_checkpoint使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類object_detection.utils.variables_helper
的用法示例。
在下文中一共展示了variables_helper.get_variables_available_in_checkpoint方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_return_variables_available_an_checkpoint_with_dict_inputs
# 需要導入模塊: from object_detection.utils import variables_helper [as 別名]
# 或者: from object_detection.utils.variables_helper import get_variables_available_in_checkpoint [as 別名]
def test_return_variables_available_an_checkpoint_with_dict_inputs(self):
checkpoint_path = os.path.join(self.get_temp_dir(), 'graph.pb')
graph1_variables = [
tf.Variable(1.0, name='ckpt_weights'),
]
init_op = tf.global_variables_initializer()
saver = tf.train.Saver(graph1_variables)
with self.test_session() as sess:
sess.run(init_op)
saver.save(sess, checkpoint_path)
graph2_variables_dict = {
'ckpt_weights': tf.Variable(1.0, name='weights'),
'ckpt_biases': tf.Variable(1.0, name='biases')
}
out_variables = variables_helper.get_variables_available_in_checkpoint(
graph2_variables_dict, checkpoint_path)
self.assertTrue(isinstance(out_variables, dict))
self.assertItemsEqual(out_variables.keys(), ['ckpt_weights'])
self.assertTrue(out_variables['ckpt_weights'].op.name == 'weights')
示例2: test_return_variables_available_in_checkpoint
# 需要導入模塊: from object_detection.utils import variables_helper [as 別名]
# 或者: from object_detection.utils.variables_helper import get_variables_available_in_checkpoint [as 別名]
def test_return_variables_available_in_checkpoint(self):
checkpoint_path = os.path.join(self.get_temp_dir(), 'model.ckpt')
with tf.Graph().as_default():
weight_variable = tf.Variable(1.0, name='weights')
global_step = tf.train.get_or_create_global_step()
graph1_variables = [
weight_variable,
global_step
]
init_op = tf.global_variables_initializer()
saver = tf.train.Saver(graph1_variables)
with self.test_session() as sess:
sess.run(init_op)
saver.save(sess, checkpoint_path)
with tf.Graph().as_default():
graph2_variables = graph1_variables + [tf.Variable(1.0, name='biases')]
out_variables = variables_helper.get_variables_available_in_checkpoint(
graph2_variables, checkpoint_path, include_global_step=False)
self.assertItemsEqual(out_variables, [weight_variable])
示例3: test_return_variables_available_an_checkpoint_with_dict_inputs
# 需要導入模塊: from object_detection.utils import variables_helper [as 別名]
# 或者: from object_detection.utils.variables_helper import get_variables_available_in_checkpoint [as 別名]
def test_return_variables_available_an_checkpoint_with_dict_inputs(self):
checkpoint_path = os.path.join(self.get_temp_dir(), 'model.ckpt')
with tf.Graph().as_default():
graph1_variables = [
tf.Variable(1.0, name='ckpt_weights'),
]
init_op = tf.global_variables_initializer()
saver = tf.train.Saver(graph1_variables)
with self.test_session() as sess:
sess.run(init_op)
saver.save(sess, checkpoint_path)
with tf.Graph().as_default():
graph2_variables_dict = {
'ckpt_weights': tf.Variable(1.0, name='weights'),
'ckpt_biases': tf.Variable(1.0, name='biases')
}
out_variables = variables_helper.get_variables_available_in_checkpoint(
graph2_variables_dict, checkpoint_path)
self.assertTrue(isinstance(out_variables, dict))
self.assertItemsEqual(out_variables.keys(), ['ckpt_weights'])
self.assertTrue(out_variables['ckpt_weights'].op.name == 'weights')
示例4: test_return_variables_available_in_checkpoint
# 需要導入模塊: from object_detection.utils import variables_helper [as 別名]
# 或者: from object_detection.utils.variables_helper import get_variables_available_in_checkpoint [as 別名]
def test_return_variables_available_in_checkpoint(self):
checkpoint_path = os.path.join(self.get_temp_dir(), 'graph.pb')
weight_variable = tf.Variable(1.0, name='weights')
global_step = tf.train.get_or_create_global_step()
graph1_variables = [
weight_variable,
global_step
]
init_op = tf.global_variables_initializer()
saver = tf.train.Saver(graph1_variables)
with self.test_session() as sess:
sess.run(init_op)
saver.save(sess, checkpoint_path)
graph2_variables = graph1_variables + [tf.Variable(1.0, name='biases')]
out_variables = variables_helper.get_variables_available_in_checkpoint(
graph2_variables, checkpoint_path, include_global_step=False)
self.assertItemsEqual(out_variables, [weight_variable])
示例5: test_return_variables_with_correct_sizes
# 需要導入模塊: from object_detection.utils import variables_helper [as 別名]
# 或者: from object_detection.utils.variables_helper import get_variables_available_in_checkpoint [as 別名]
def test_return_variables_with_correct_sizes(self):
checkpoint_path = os.path.join(self.get_temp_dir(), 'graph.pb')
bias_variable = tf.Variable(3.0, name='biases')
global_step = tf.train.get_or_create_global_step()
graph1_variables = [
tf.Variable([[1.0, 2.0], [3.0, 4.0]], name='weights'),
bias_variable,
global_step
]
init_op = tf.global_variables_initializer()
saver = tf.train.Saver(graph1_variables)
with self.test_session() as sess:
sess.run(init_op)
saver.save(sess, checkpoint_path)
graph2_variables = [
tf.Variable([1.0, 2.0], name='weights'), # Note the new variable shape.
bias_variable,
global_step
]
out_variables = variables_helper.get_variables_available_in_checkpoint(
graph2_variables, checkpoint_path, include_global_step=True)
self.assertItemsEqual(out_variables, [bias_variable, global_step])
示例6: test_return_all_variables_from_checkpoint_with_partition
# 需要導入模塊: from object_detection.utils import variables_helper [as 別名]
# 或者: from object_detection.utils.variables_helper import get_variables_available_in_checkpoint [as 別名]
def test_return_all_variables_from_checkpoint_with_partition(self):
with tf.Graph().as_default():
partitioner = tf.fixed_size_partitioner(2)
variables = [
tf.get_variable(
name='weights', shape=(2, 2), partitioner=partitioner),
tf.Variable([1.0, 2.0], name='biases')
]
checkpoint_path = os.path.join(self.get_temp_dir(), 'model.ckpt')
init_op = tf.global_variables_initializer()
saver = tf.train.Saver(variables)
with self.test_session() as sess:
sess.run(init_op)
saver.save(sess, checkpoint_path)
out_variables = variables_helper.get_variables_available_in_checkpoint(
variables, checkpoint_path)
self.assertItemsEqual(out_variables, variables)
開發者ID:ShivangShekhar,項目名稱:Live-feed-object-device-identification-using-Tensorflow-and-OpenCV,代碼行數:19,代碼來源:variables_helper_test.py