本文整理匯總了Python中object_detection.utils.shape_utils.combined_static_and_dynamic_shape方法的典型用法代碼示例。如果您正苦於以下問題:Python shape_utils.combined_static_and_dynamic_shape方法的具體用法?Python shape_utils.combined_static_and_dynamic_shape怎麽用?Python shape_utils.combined_static_and_dynamic_shape使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類object_detection.utils.shape_utils
的用法示例。
在下文中一共展示了shape_utils.combined_static_and_dynamic_shape方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: matmul_gather_on_zeroth_axis
# 需要導入模塊: from object_detection.utils import shape_utils [as 別名]
# 或者: from object_detection.utils.shape_utils import combined_static_and_dynamic_shape [as 別名]
def matmul_gather_on_zeroth_axis(params, indices, scope=None):
"""Matrix multiplication based implementation of tf.gather on zeroth axis.
TODO(rathodv, jonathanhuang): enable sparse matmul option.
Args:
params: A float32 Tensor. The tensor from which to gather values.
Must be at least rank 1.
indices: A Tensor. Must be one of the following types: int32, int64.
Must be in range [0, params.shape[0])
scope: A name for the operation (optional).
Returns:
A Tensor. Has the same type as params. Values from params gathered
from indices given by indices, with shape indices.shape + params.shape[1:].
"""
with tf.name_scope(scope, 'MatMulGather'):
params_shape = shape_utils.combined_static_and_dynamic_shape(params)
indices_shape = shape_utils.combined_static_and_dynamic_shape(indices)
params2d = tf.reshape(params, [params_shape[0], -1])
indicator_matrix = tf.one_hot(indices, params_shape[0])
gathered_result_flattened = tf.matmul(indicator_matrix, params2d)
return tf.reshape(gathered_result_flattened,
tf.stack(indices_shape + params_shape[1:]))
示例2: _flatten_first_two_dimensions
# 需要導入模塊: from object_detection.utils import shape_utils [as 別名]
# 或者: from object_detection.utils.shape_utils import combined_static_and_dynamic_shape [as 別名]
def _flatten_first_two_dimensions(self, inputs):
"""Flattens `K-d` tensor along batch dimension to be a `(K-1)-d` tensor.
Converts `inputs` with shape [A, B, ..., depth] into a tensor of shape
[A * B, ..., depth].
Args:
inputs: A float tensor with shape [A, B, ..., depth]. Note that the first
two and last dimensions must be statically defined.
Returns:
A float tensor with shape [A * B, ..., depth] (where the first and last
dimension are statically defined.
"""
combined_shape = shape_utils.combined_static_and_dynamic_shape(inputs)
flattened_shape = tf.stack([combined_shape[0] * combined_shape[1]] +
combined_shape[2:])
return tf.reshape(inputs, flattened_shape)
示例3: nearest_neighbor_upsampling
# 需要導入模塊: from object_detection.utils import shape_utils [as 別名]
# 或者: from object_detection.utils.shape_utils import combined_static_and_dynamic_shape [as 別名]
def nearest_neighbor_upsampling(input_tensor, scale):
"""Nearest neighbor upsampling implementation.
Nearest neighbor upsampling function that maps input tensor with shape
[batch_size, height, width, channels] to [batch_size, height * scale
, width * scale, channels]. This implementation only uses reshape and
broadcasting to make it TPU compatible.
Args:
input_tensor: A float32 tensor of size [batch, height_in, width_in,
channels].
scale: An integer multiple to scale resolution of input data.
Returns:
data_up: A float32 tensor of size
[batch, height_in*scale, width_in*scale, channels].
"""
with tf.name_scope('nearest_neighbor_upsampling'):
(batch_size, height, width,
channels) = shape_utils.combined_static_and_dynamic_shape(input_tensor)
output_tensor = tf.reshape(
input_tensor, [batch_size, height, 1, width, 1, channels]) * tf.ones(
[1, 1, scale, 1, scale, 1], dtype=input_tensor.dtype)
return tf.reshape(output_tensor,
[batch_size, height * scale, width * scale, channels])
示例4: nearest_neighbor_upsampling
# 需要導入模塊: from object_detection.utils import shape_utils [as 別名]
# 或者: from object_detection.utils.shape_utils import combined_static_and_dynamic_shape [as 別名]
def nearest_neighbor_upsampling(input_tensor, scale):
"""Nearest neighbor upsampling implementation.
Nearest neighbor upsampling function that maps input tensor with shape
[batch_size, height, width, channels] to [batch_size, height * scale
, width * scale, channels]. This implementation only uses reshape and tile to
make it compatible with certain hardware.
Args:
input_tensor: A float32 tensor of size [batch, height_in, width_in,
channels].
scale: An integer multiple to scale resolution of input data.
Returns:
data_up: A float32 tensor of size
[batch, height_in*scale, width_in*scale, channels].
"""
shape = shape_utils.combined_static_and_dynamic_shape(input_tensor)
shape_before_tile = [shape[0], shape[1], 1, shape[2], 1, shape[3]]
shape_after_tile = [shape[0], shape[1] * scale, shape[2] * scale, shape[3]]
data_reshaped = tf.reshape(input_tensor, shape_before_tile)
resized_tensor = tf.tile(data_reshaped, [1, 1, scale, 1, scale, 1])
resized_tensor = tf.reshape(resized_tensor, shape_after_tile)
return resized_tensor
示例5: _batch_decode
# 需要導入模塊: from object_detection.utils import shape_utils [as 別名]
# 或者: from object_detection.utils.shape_utils import combined_static_and_dynamic_shape [as 別名]
def _batch_decode(self, box_encodings):
"""Decodes a batch of box encodings with respect to the anchors.
Args:
box_encodings: A float32 tensor of shape
[batch_size, num_anchors, box_code_size] containing box encodings.
Returns:
decoded_boxes: A float32 tensor of shape
[batch_size, num_anchors, 4] containing the decoded boxes.
"""
combined_shape = shape_utils.combined_static_and_dynamic_shape(
box_encodings)
batch_size = combined_shape[0]
tiled_anchor_boxes = tf.tile(
tf.expand_dims(self.anchors.get(), 0), [batch_size, 1, 1])
tiled_anchors_boxlist = box_list.BoxList(
tf.reshape(tiled_anchor_boxes, [-1, self._box_coder.code_size]))
decoded_boxes = self._box_coder.decode(
tf.reshape(box_encodings, [-1, self._box_coder.code_size]),
tiled_anchors_boxlist)
return tf.reshape(decoded_boxes.get(),
tf.stack([combined_shape[0], combined_shape[1],
4]))
示例6: nearest_neighbor_upsampling
# 需要導入模塊: from object_detection.utils import shape_utils [as 別名]
# 或者: from object_detection.utils.shape_utils import combined_static_and_dynamic_shape [as 別名]
def nearest_neighbor_upsampling(input_tensor, scale=None, height_scale=None,
width_scale=None):
"""Nearest neighbor upsampling implementation.
Nearest neighbor upsampling function that maps input tensor with shape
[batch_size, height, width, channels] to [batch_size, height * scale
, width * scale, channels]. This implementation only uses reshape and
broadcasting to make it TPU compatible.
Args:
input_tensor: A float32 tensor of size [batch, height_in, width_in,
channels].
scale: An integer multiple to scale resolution of input data in both height
and width dimensions.
height_scale: An integer multiple to scale the height of input image. This
option when provided overrides `scale` option.
width_scale: An integer multiple to scale the width of input image. This
option when provided overrides `scale` option.
Returns:
data_up: A float32 tensor of size
[batch, height_in*scale, width_in*scale, channels].
Raises:
ValueError: If both scale and height_scale or if both scale and width_scale
are None.
"""
if not scale and (height_scale is None or width_scale is None):
raise ValueError('Provide either `scale` or `height_scale` and'
' `width_scale`.')
with tf.name_scope('nearest_neighbor_upsampling'):
h_scale = scale if height_scale is None else height_scale
w_scale = scale if width_scale is None else width_scale
(batch_size, height, width,
channels) = shape_utils.combined_static_and_dynamic_shape(input_tensor)
output_tensor = tf.reshape(
input_tensor, [batch_size, height, 1, width, 1, channels]) * tf.ones(
[1, 1, h_scale, 1, w_scale, 1], dtype=input_tensor.dtype)
return tf.reshape(output_tensor,
[batch_size, height * h_scale, width * w_scale, channels])
示例7: test_combines_static_dynamic_shape
# 需要導入模塊: from object_detection.utils import shape_utils [as 別名]
# 或者: from object_detection.utils.shape_utils import combined_static_and_dynamic_shape [as 別名]
def test_combines_static_dynamic_shape(self):
tensor = tf.placeholder(tf.float32, shape=(None, 2, 3))
combined_shape = shape_utils.combined_static_and_dynamic_shape(
tensor)
self.assertTrue(tf.contrib.framework.is_tensor(combined_shape[0]))
self.assertListEqual(combined_shape[1:], [2, 3])
示例8: test_unequal_static_shape_raises_exception
# 需要導入模塊: from object_detection.utils import shape_utils [as 別名]
# 或者: from object_detection.utils.shape_utils import combined_static_and_dynamic_shape [as 別名]
def test_unequal_static_shape_raises_exception(self):
shape_a = tf.constant(np.zeros([4, 2, 2, 1]))
shape_b = tf.constant(np.zeros([4, 2, 3, 1]))
with self.assertRaisesRegexp(
ValueError, 'Unequal shapes'):
shape_utils.assert_shape_equal(
shape_utils.combined_static_and_dynamic_shape(shape_a),
shape_utils.combined_static_and_dynamic_shape(shape_b))
示例9: test_equal_static_shape_succeeds
# 需要導入模塊: from object_detection.utils import shape_utils [as 別名]
# 或者: from object_detection.utils.shape_utils import combined_static_and_dynamic_shape [as 別名]
def test_equal_static_shape_succeeds(self):
shape_a = tf.constant(np.zeros([4, 2, 2, 1]))
shape_b = tf.constant(np.zeros([4, 2, 2, 1]))
with self.test_session() as sess:
op = shape_utils.assert_shape_equal(
shape_utils.combined_static_and_dynamic_shape(shape_a),
shape_utils.combined_static_and_dynamic_shape(shape_b))
sess.run(op)
示例10: test_equal_dynamic_shape_succeeds
# 需要導入模塊: from object_detection.utils import shape_utils [as 別名]
# 或者: from object_detection.utils.shape_utils import combined_static_and_dynamic_shape [as 別名]
def test_equal_dynamic_shape_succeeds(self):
tensor_a = tf.placeholder(tf.float32, shape=[1, None, None, 3])
tensor_b = tf.placeholder(tf.float32, shape=[1, None, None, 3])
op = shape_utils.assert_shape_equal(
shape_utils.combined_static_and_dynamic_shape(tensor_a),
shape_utils.combined_static_and_dynamic_shape(tensor_b))
with self.test_session() as sess:
sess.run(op, feed_dict={tensor_a: np.zeros([1, 2, 2, 3]),
tensor_b: np.zeros([1, 2, 2, 3])})
示例11: test_unequal_static_shape_along_first_dim_raises_exception
# 需要導入模塊: from object_detection.utils import shape_utils [as 別名]
# 或者: from object_detection.utils.shape_utils import combined_static_and_dynamic_shape [as 別名]
def test_unequal_static_shape_along_first_dim_raises_exception(self):
shape_a = tf.constant(np.zeros([4, 2, 2, 1]))
shape_b = tf.constant(np.zeros([6, 2, 3, 1]))
with self.assertRaisesRegexp(
ValueError, 'Unequal first dimension'):
shape_utils.assert_shape_equal_along_first_dimension(
shape_utils.combined_static_and_dynamic_shape(shape_a),
shape_utils.combined_static_and_dynamic_shape(shape_b))
示例12: test_equal_static_shape_along_first_dim_succeeds
# 需要導入模塊: from object_detection.utils import shape_utils [as 別名]
# 或者: from object_detection.utils.shape_utils import combined_static_and_dynamic_shape [as 別名]
def test_equal_static_shape_along_first_dim_succeeds(self):
shape_a = tf.constant(np.zeros([4, 2, 2, 1]))
shape_b = tf.constant(np.zeros([4, 7, 2]))
with self.test_session() as sess:
op = shape_utils.assert_shape_equal_along_first_dimension(
shape_utils.combined_static_and_dynamic_shape(shape_a),
shape_utils.combined_static_and_dynamic_shape(shape_b))
sess.run(op)
示例13: test_unequal_dynamic_shape_along_first_dim_raises_tf_assert
# 需要導入模塊: from object_detection.utils import shape_utils [as 別名]
# 或者: from object_detection.utils.shape_utils import combined_static_and_dynamic_shape [as 別名]
def test_unequal_dynamic_shape_along_first_dim_raises_tf_assert(self):
tensor_a = tf.placeholder(tf.float32, shape=[None, None, None, 3])
tensor_b = tf.placeholder(tf.float32, shape=[None, None, 3])
op = shape_utils.assert_shape_equal_along_first_dimension(
shape_utils.combined_static_and_dynamic_shape(tensor_a),
shape_utils.combined_static_and_dynamic_shape(tensor_b))
with self.test_session() as sess:
with self.assertRaises(tf.errors.InvalidArgumentError):
sess.run(op, feed_dict={tensor_a: np.zeros([1, 2, 2, 3]),
tensor_b: np.zeros([2, 4, 3])})
示例14: test_equal_dynamic_shape_along_first_dim_succeeds
# 需要導入模塊: from object_detection.utils import shape_utils [as 別名]
# 或者: from object_detection.utils.shape_utils import combined_static_and_dynamic_shape [as 別名]
def test_equal_dynamic_shape_along_first_dim_succeeds(self):
tensor_a = tf.placeholder(tf.float32, shape=[None, None, None, 3])
tensor_b = tf.placeholder(tf.float32, shape=[None])
op = shape_utils.assert_shape_equal_along_first_dimension(
shape_utils.combined_static_and_dynamic_shape(tensor_a),
shape_utils.combined_static_and_dynamic_shape(tensor_b))
with self.test_session() as sess:
sess.run(op, feed_dict={tensor_a: np.zeros([5, 2, 2, 3]),
tensor_b: np.zeros([5])})
示例15: _predict
# 需要導入模塊: from object_detection.utils import shape_utils [as 別名]
# 或者: from object_detection.utils.shape_utils import combined_static_and_dynamic_shape [as 別名]
def _predict(self, image_features, **kwargs):
image_feature = image_features[0]
combined_feature_shape = shape_utils.combined_static_and_dynamic_shape(
image_feature)
batch_size = combined_feature_shape[0]
num_anchors = (combined_feature_shape[1] * combined_feature_shape[2])
code_size = 4
zero = tf.reduce_sum(0 * image_feature)
num_class_slots = self.num_classes
if self._add_background_class:
num_class_slots = num_class_slots + 1
box_encodings = zero + tf.zeros(
(batch_size, num_anchors, 1, code_size), dtype=tf.float32)
class_predictions_with_background = zero + tf.zeros(
(batch_size, num_anchors, num_class_slots), dtype=tf.float32)
masks = zero + tf.zeros(
(batch_size, num_anchors, self.num_classes, DEFAULT_MASK_SIZE,
DEFAULT_MASK_SIZE),
dtype=tf.float32)
predictions_dict = {
box_predictor.BOX_ENCODINGS:
box_encodings,
box_predictor.CLASS_PREDICTIONS_WITH_BACKGROUND:
class_predictions_with_background
}
if self._predict_mask:
predictions_dict[box_predictor.MASK_PREDICTIONS] = masks
return predictions_dict