當前位置: 首頁>>代碼示例>>Python>>正文


Python shape_utils.check_min_image_dim方法代碼示例

本文整理匯總了Python中object_detection.utils.shape_utils.check_min_image_dim方法的典型用法代碼示例。如果您正苦於以下問題:Python shape_utils.check_min_image_dim方法的具體用法?Python shape_utils.check_min_image_dim怎麽用?Python shape_utils.check_min_image_dim使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在object_detection.utils.shape_utils的用法示例。


在下文中一共展示了shape_utils.check_min_image_dim方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _extract_features

# 需要導入模塊: from object_detection.utils import shape_utils [as 別名]
# 或者: from object_detection.utils.shape_utils import check_min_image_dim [as 別名]
def _extract_features(self, preprocessed_inputs):
    """Extract features from preprocessed inputs.

    Args:
      preprocessed_inputs: a [batch, height, width, channels] float tensor
        representing a batch of images.

    Returns:
      feature_maps: a list of tensors where the ith tensor has shape
        [batch, height_i, width_i, depth_i]
    """
    preprocessed_inputs = shape_utils.check_min_image_dim(
        33, preprocessed_inputs)

    image_features = self.mobilenet_v2(
        ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple))

    feature_maps = self.feature_map_generator({
        'layer_15/expansion_output': image_features[0],
        'layer_19': image_features[1]})

    return feature_maps.values() 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:24,代碼來源:ssd_mobilenet_v2_keras_feature_extractor.py

示例2: _extract_features

# 需要導入模塊: from object_detection.utils import shape_utils [as 別名]
# 或者: from object_detection.utils.shape_utils import check_min_image_dim [as 別名]
def _extract_features(self, preprocessed_inputs):
    """Extract features from preprocessed inputs.

    Args:
      preprocessed_inputs: a [batch, height, width, channels] float tensor
        representing a batch of images.

    Returns:
      feature_maps: a list of tensors where the ith tensor has shape
        [batch, height_i, width_i, depth_i]
    """
    preprocessed_inputs = shape_utils.check_min_image_dim(
        33, preprocessed_inputs)

    image_features = self._mobilenet_v1(
        ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple))

    feature_maps = self._feature_map_generator({
        'Conv2d_11_pointwise': image_features[0],
        'Conv2d_13_pointwise': image_features[1]})

    return feature_maps.values() 
開發者ID:ShivangShekhar,項目名稱:Live-feed-object-device-identification-using-Tensorflow-and-OpenCV,代碼行數:24,代碼來源:ssd_mobilenet_v1_keras_feature_extractor.py

示例3: test_check_min_image_dim_static_shape

# 需要導入模塊: from object_detection.utils import shape_utils [as 別名]
# 或者: from object_detection.utils.shape_utils import check_min_image_dim [as 別名]
def test_check_min_image_dim_static_shape(self):
    input_tensor = tf.constant(np.zeros([1, 42, 42, 3]))
    _ = shape_utils.check_min_image_dim(33, input_tensor)

    with self.assertRaisesRegexp(
        ValueError, 'image size must be >= 64 in both height and width.'):
      _ = shape_utils.check_min_image_dim(64, input_tensor) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:9,代碼來源:shape_utils_test.py

示例4: test_check_min_image_dim_dynamic_shape

# 需要導入模塊: from object_detection.utils import shape_utils [as 別名]
# 或者: from object_detection.utils.shape_utils import check_min_image_dim [as 別名]
def test_check_min_image_dim_dynamic_shape(self):
    input_placeholder = tf.placeholder(tf.float32, shape=[1, None, None, 3])
    image_tensor = shape_utils.check_min_image_dim(33, input_placeholder)

    with self.test_session() as sess:
      sess.run(image_tensor,
               feed_dict={input_placeholder: np.zeros([1, 42, 42, 3])})
      with self.assertRaises(tf.errors.InvalidArgumentError):
        sess.run(image_tensor,
                 feed_dict={input_placeholder: np.zeros([1, 32, 32, 3])}) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:12,代碼來源:shape_utils_test.py

示例5: extract_features

# 需要導入模塊: from object_detection.utils import shape_utils [as 別名]
# 或者: from object_detection.utils.shape_utils import check_min_image_dim [as 別名]
def extract_features(self, preprocessed_inputs):
    """Extract features from preprocessed inputs.

    Args:
      preprocessed_inputs: a [batch, height, width, channels] float tensor
        representing a batch of images.

    Returns:
      feature_maps: a list of tensors where the ith tensor has shape
        [batch, height_i, width_i, depth_i]
    """
    preprocessed_inputs = shape_utils.check_min_image_dim(
        33, preprocessed_inputs)

    with tf.variable_scope('MobilenetV1',
                           reuse=self._reuse_weights) as scope:
      with slim.arg_scope(
          mobilenet_v1.mobilenet_v1_arg_scope(
              is_training=None, regularize_depthwise=True)):
        with (slim.arg_scope(self._conv_hyperparams_fn())
              if self._override_base_feature_extractor_hyperparams
              else context_manager.IdentityContextManager()):
          _, image_features = mobilenet_v1.mobilenet_v1_base(
              ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple),
              final_endpoint='Conv2d_13_pointwise',
              min_depth=self._min_depth,
              depth_multiplier=self._depth_multiplier,
              use_explicit_padding=self._use_explicit_padding,
              scope=scope)
      with slim.arg_scope(self._conv_hyperparams_fn()):
        feature_maps = feature_map_generators.pooling_pyramid_feature_maps(
            base_feature_map_depth=0,
            num_layers=6,
            image_features={
                'image_features': image_features['Conv2d_11_pointwise']
            })
    return feature_maps.values() 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:39,代碼來源:ssd_mobilenet_v1_ppn_feature_extractor.py

示例6: extract_features

# 需要導入模塊: from object_detection.utils import shape_utils [as 別名]
# 或者: from object_detection.utils.shape_utils import check_min_image_dim [as 別名]
def extract_features(self, preprocessed_inputs):
    """Extract features from preprocessed inputs.

    Args:
      preprocessed_inputs: a [batch, height, width, channels] float tensor
        representing a batch of images.

    Returns:
      feature_maps: a list of tensors where the ith tensor has shape
        [batch, height_i, width_i, depth_i]
    """
    preprocessed_inputs = shape_utils.check_min_image_dim(
        33, preprocessed_inputs)

    feature_map_layout = {
        'from_layer': ['Mixed_4c', 'Mixed_5c', '', '', '', ''],
        'layer_depth': [-1, -1, 512, 256, 256, 128],
        'use_explicit_padding': self._use_explicit_padding,
        'use_depthwise': self._use_depthwise,
    }

    with slim.arg_scope(self._conv_hyperparams_fn()):
      with tf.variable_scope('InceptionV2',
                             reuse=self._reuse_weights) as scope:
        _, image_features = inception_v2.inception_v2_base(
            ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple),
            final_endpoint='Mixed_5c',
            min_depth=self._min_depth,
            depth_multiplier=self._depth_multiplier,
            scope=scope)
        feature_maps = feature_map_generators.multi_resolution_feature_maps(
            feature_map_layout=feature_map_layout,
            depth_multiplier=self._depth_multiplier,
            min_depth=self._min_depth,
            insert_1x1_conv=True,
            image_features=image_features)

    return feature_maps.values() 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:40,代碼來源:ssd_inception_v2_feature_extractor.py

示例7: extract_features

# 需要導入模塊: from object_detection.utils import shape_utils [as 別名]
# 或者: from object_detection.utils.shape_utils import check_min_image_dim [as 別名]
def extract_features(self, preprocessed_inputs):
    """Extract features from preprocessed inputs.

    Args:
      preprocessed_inputs: a [batch, height, width, channels] float tensor
        representing a batch of images.

    Returns:
      feature_maps: a list of tensors where the ith tensor has shape
        [batch, height_i, width_i, depth_i]
    """
    preprocessed_inputs = shape_utils.check_min_image_dim(
        33, preprocessed_inputs)

    feature_map_layout = {
        'from_layer': ['Mixed_5d', 'Mixed_6e', 'Mixed_7c', '', '', ''],
        'layer_depth': [-1, -1, -1, 512, 256, 128],
        'use_explicit_padding': self._use_explicit_padding,
        'use_depthwise': self._use_depthwise,
    }

    with slim.arg_scope(self._conv_hyperparams_fn()):
      with tf.variable_scope('InceptionV3', reuse=self._reuse_weights) as scope:
        _, image_features = inception_v3.inception_v3_base(
            ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple),
            final_endpoint='Mixed_7c',
            min_depth=self._min_depth,
            depth_multiplier=self._depth_multiplier,
            scope=scope)
        feature_maps = feature_map_generators.multi_resolution_feature_maps(
            feature_map_layout=feature_map_layout,
            depth_multiplier=self._depth_multiplier,
            min_depth=self._min_depth,
            insert_1x1_conv=True,
            image_features=image_features)

    return feature_maps.values() 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:39,代碼來源:ssd_inception_v3_feature_extractor.py

示例8: extract_features

# 需要導入模塊: from object_detection.utils import shape_utils [as 別名]
# 或者: from object_detection.utils.shape_utils import check_min_image_dim [as 別名]
def extract_features(self, preprocessed_inputs):
    """Extract features from preprocessed inputs.

    Args:
      preprocessed_inputs: a [batch, height, width, channels] float tensor
        representing a batch of images.

    Returns:
      feature_maps: a list of tensors where the ith tensor has shape
        [batch, height_i, width_i, depth_i]
    """
    preprocessed_inputs = shape_utils.check_min_image_dim(
        33, preprocessed_inputs)

    feature_map_layout = {
        'from_layer': ['Mixed_5d', 'Mixed_6e', 'Mixed_7c', '', '', ''],
        'layer_depth': [-1, -1, -1, 512, 256, 128],
        'use_explicit_padding': self._use_explicit_padding,
        'use_depthwise': self._use_depthwise,
    }

    with slim.arg_scope(self._conv_hyperparams):
      with tf.variable_scope('InceptionV3', reuse=self._reuse_weights) as scope:
        _, image_features = inception_v3.inception_v3_base(
            ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple),
            final_endpoint='Mixed_7c',
            min_depth=self._min_depth,
            depth_multiplier=self._depth_multiplier,
            scope=scope)
        feature_maps = feature_map_generators.multi_resolution_feature_maps(
            feature_map_layout=feature_map_layout,
            depth_multiplier=self._depth_multiplier,
            min_depth=self._min_depth,
            insert_1x1_conv=True,
            image_features=image_features)

    return feature_maps.values() 
開發者ID:cagbal,項目名稱:ros_people_object_detection_tensorflow,代碼行數:39,代碼來源:ssd_inception_v3_feature_extractor.py

示例9: extract_features

# 需要導入模塊: from object_detection.utils import shape_utils [as 別名]
# 或者: from object_detection.utils.shape_utils import check_min_image_dim [as 別名]
def extract_features(self, preprocessed_inputs):
    """Extract features from preprocessed inputs.

    Args:
      preprocessed_inputs: a [batch, height, width, channels] float tensor
        representing a batch of images.

    Returns:
      feature_maps: a list of tensors where the ith tensor has shape
        [batch, height_i, width_i, depth_i]
    """
    preprocessed_inputs = shape_utils.check_min_image_dim(
        33, preprocessed_inputs)

    feature_map_layout = {
        'from_layer': ['Conv2d_11_pointwise', 'Conv2d_13_pointwise', '', '',
                       '', ''],
        'layer_depth': [-1, -1, 512, 256, 256, 128],
        'use_explicit_padding': self._use_explicit_padding,
        'use_depthwise': self._use_depthwise,
    }

    with slim.arg_scope(self._conv_hyperparams):
      # TODO: Enable fused batch norm once quantization supports it.
      with slim.arg_scope([slim.batch_norm], fused=False):
        with tf.variable_scope('MobilenetV1',
                               reuse=self._reuse_weights) as scope:
          _, image_features = mobilenet_v1.mobilenet_v1_base(
              ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple),
              final_endpoint='Conv2d_13_pointwise',
              min_depth=self._min_depth,
              depth_multiplier=self._depth_multiplier,
              scope=scope)
          feature_maps = feature_map_generators.multi_resolution_feature_maps(
              feature_map_layout=feature_map_layout,
              depth_multiplier=self._depth_multiplier,
              min_depth=self._min_depth,
              insert_1x1_conv=True,
              image_features=image_features)

    return feature_maps.values() 
開發者ID:ShreyAmbesh,項目名稱:Traffic-Rule-Violation-Detection-System,代碼行數:43,代碼來源:ssd_mobilenet_v1_feature_extractor.py

示例10: extract_features

# 需要導入模塊: from object_detection.utils import shape_utils [as 別名]
# 或者: from object_detection.utils.shape_utils import check_min_image_dim [as 別名]
def extract_features(self, preprocessed_inputs):
    """Extract features from preprocessed inputs.

    Args:
      preprocessed_inputs: a [batch, height, width, channels] float tensor
        representing a batch of images.

    Returns:
      feature_maps: a list of tensors where the ith tensor has shape
        [batch, height_i, width_i, depth_i]
    """
    preprocessed_inputs = shape_utils.check_min_image_dim(
        33, preprocessed_inputs)

    feature_map_layout = {
        'from_layer': ['Mixed_4c', 'Mixed_5c', '', '', '', ''],
        'layer_depth': [-1, -1, 512, 256, 256, 128],
        'use_explicit_padding': self._use_explicit_padding,
        'use_depthwise': self._use_depthwise,
    }

    with slim.arg_scope(self._conv_hyperparams):
      with tf.variable_scope('InceptionV2',
                             reuse=self._reuse_weights) as scope:
        _, image_features = inception_v2.inception_v2_base(
            ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple),
            final_endpoint='Mixed_5c',
            min_depth=self._min_depth,
            depth_multiplier=self._depth_multiplier,
            scope=scope)
        feature_maps = feature_map_generators.multi_resolution_feature_maps(
            feature_map_layout=feature_map_layout,
            depth_multiplier=self._depth_multiplier,
            min_depth=self._min_depth,
            insert_1x1_conv=True,
            image_features=image_features)

    return feature_maps.values() 
開發者ID:ShreyAmbesh,項目名稱:Traffic-Rule-Violation-Detection-System,代碼行數:40,代碼來源:ssd_inception_v2_feature_extractor.py


注:本文中的object_detection.utils.shape_utils.check_min_image_dim方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。