本文整理匯總了Python中object_detection.utils.ops.pad_to_multiple方法的典型用法代碼示例。如果您正苦於以下問題:Python ops.pad_to_multiple方法的具體用法?Python ops.pad_to_multiple怎麽用?Python ops.pad_to_multiple使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類object_detection.utils.ops
的用法示例。
在下文中一共展示了ops.pad_to_multiple方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _extract_features
# 需要導入模塊: from object_detection.utils import ops [as 別名]
# 或者: from object_detection.utils.ops import pad_to_multiple [as 別名]
def _extract_features(self, preprocessed_inputs):
"""Extract features from preprocessed inputs.
Args:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
feature_maps: a list of tensors where the ith tensor has shape
[batch, height_i, width_i, depth_i]
"""
preprocessed_inputs = shape_utils.check_min_image_dim(
33, preprocessed_inputs)
image_features = self.mobilenet_v2(
ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple))
feature_maps = self.feature_map_generator({
'layer_15/expansion_output': image_features[0],
'layer_19': image_features[1]})
return feature_maps.values()
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:24,代碼來源:ssd_mobilenet_v2_keras_feature_extractor.py
示例2: test_zero_padding
# 需要導入模塊: from object_detection.utils import ops [as 別名]
# 或者: from object_detection.utils.ops import pad_to_multiple [as 別名]
def test_zero_padding(self):
tensor = tf.constant([[[[0.], [0.]], [[0.], [0.]]]])
padded_tensor = ops.pad_to_multiple(tensor, 1)
with self.test_session() as sess:
padded_tensor_out = sess.run(padded_tensor)
self.assertEqual((1, 2, 2, 1), padded_tensor_out.shape)
示例3: test_no_padding
# 需要導入模塊: from object_detection.utils import ops [as 別名]
# 或者: from object_detection.utils.ops import pad_to_multiple [as 別名]
def test_no_padding(self):
tensor = tf.constant([[[[0.], [0.]], [[0.], [0.]]]])
padded_tensor = ops.pad_to_multiple(tensor, 2)
with self.test_session() as sess:
padded_tensor_out = sess.run(padded_tensor)
self.assertEqual((1, 2, 2, 1), padded_tensor_out.shape)
示例4: test_padding
# 需要導入模塊: from object_detection.utils import ops [as 別名]
# 或者: from object_detection.utils.ops import pad_to_multiple [as 別名]
def test_padding(self):
tensor = tf.constant([[[[0.], [0.]], [[0.], [0.]]]])
padded_tensor = ops.pad_to_multiple(tensor, 4)
with self.test_session() as sess:
padded_tensor_out = sess.run(padded_tensor)
self.assertEqual((1, 4, 4, 1), padded_tensor_out.shape)
示例5: test_non_square_padding
# 需要導入模塊: from object_detection.utils import ops [as 別名]
# 或者: from object_detection.utils.ops import pad_to_multiple [as 別名]
def test_non_square_padding(self):
tensor = tf.constant([[[[0.], [0.]]]])
padded_tensor = ops.pad_to_multiple(tensor, 2)
with self.test_session() as sess:
padded_tensor_out = sess.run(padded_tensor)
self.assertEqual((1, 2, 2, 1), padded_tensor_out.shape)
示例6: extract_features
# 需要導入模塊: from object_detection.utils import ops [as 別名]
# 或者: from object_detection.utils.ops import pad_to_multiple [as 別名]
def extract_features(self, preprocessed_inputs):
"""Extract features from preprocessed inputs.
Args:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
feature_maps: a list of tensors where the ith tensor has shape
[batch, height_i, width_i, depth_i]
"""
preprocessed_inputs = shape_utils.check_min_image_dim(
33, preprocessed_inputs)
with tf.variable_scope('MobilenetV1',
reuse=self._reuse_weights) as scope:
with slim.arg_scope(
mobilenet_v1.mobilenet_v1_arg_scope(
is_training=None, regularize_depthwise=True)):
with (slim.arg_scope(self._conv_hyperparams_fn())
if self._override_base_feature_extractor_hyperparams
else context_manager.IdentityContextManager()):
_, image_features = mobilenet_v1.mobilenet_v1_base(
ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple),
final_endpoint='Conv2d_13_pointwise',
min_depth=self._min_depth,
depth_multiplier=self._depth_multiplier,
use_explicit_padding=self._use_explicit_padding,
scope=scope)
with slim.arg_scope(self._conv_hyperparams_fn()):
feature_maps = feature_map_generators.pooling_pyramid_feature_maps(
base_feature_map_depth=0,
num_layers=6,
image_features={
'image_features': image_features['Conv2d_11_pointwise']
})
return feature_maps.values()
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:39,代碼來源:ssd_mobilenet_v1_ppn_feature_extractor.py
示例7: __init__
# 需要導入模塊: from object_detection.utils import ops [as 別名]
# 或者: from object_detection.utils.ops import pad_to_multiple [as 別名]
def __init__(self,
is_training,
depth_multiplier,
min_depth,
pad_to_multiple,
conv_hyperparams_fn,
reuse_weights=None,
use_explicit_padding=False,
use_depthwise=False,
override_base_feature_extractor_hyperparams=False):
"""Resnet50 v1 Feature Extractor for SSD Models.
Args:
is_training: whether the network is in training mode.
depth_multiplier: float depth multiplier for feature extractor.
min_depth: minimum feature extractor depth.
pad_to_multiple: the nearest multiple to zero pad the input height and
width dimensions to.
conv_hyperparams_fn: A function to construct tf slim arg_scope for conv2d
and separable_conv2d ops in the layers that are added on top of the
base feature extractor.
reuse_weights: Whether to reuse variables. Default is None.
use_explicit_padding: Whether to use explicit padding when extracting
features. Default is False.
use_depthwise: Whether to use depthwise convolutions. Default is False.
override_base_feature_extractor_hyperparams: Whether to override
hyperparameters of the base feature extractor with the one from
`conv_hyperparams_fn`.
"""
super(SSDResnet50V1PpnFeatureExtractor, self).__init__(
is_training, depth_multiplier, min_depth, pad_to_multiple,
conv_hyperparams_fn, resnet_v1.resnet_v1_50, 'resnet_v1_50',
reuse_weights, use_explicit_padding, use_depthwise,
override_base_feature_extractor_hyperparams=(
override_base_feature_extractor_hyperparams))
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:37,代碼來源:ssd_resnet_v1_ppn_feature_extractor.py
示例8: __init__
# 需要導入模塊: from object_detection.utils import ops [as 別名]
# 或者: from object_detection.utils.ops import pad_to_multiple [as 別名]
def __init__(self,
is_training,
depth_multiplier,
min_depth,
pad_to_multiple,
conv_hyperparams_fn,
reuse_weights=None,
use_explicit_padding=False,
use_depthwise=False,
override_base_feature_extractor_hyperparams=False):
"""MobileNetV1 Feature Extractor for Embedded-friendly SSD Models.
Args:
is_training: whether the network is in training mode.
depth_multiplier: float depth multiplier for feature extractor.
min_depth: minimum feature extractor depth.
pad_to_multiple: the nearest multiple to zero pad the input height and
width dimensions to. For EmbeddedSSD it must be set to 1.
conv_hyperparams_fn: A function to construct tf slim arg_scope for conv2d
and separable_conv2d ops in the layers that are added on top of the
base feature extractor.
reuse_weights: Whether to reuse variables. Default is None.
use_explicit_padding: Whether to use explicit padding when extracting
features. Default is False.
use_depthwise: Whether to use depthwise convolutions. Default is False.
override_base_feature_extractor_hyperparams: Whether to override
hyperparameters of the base feature extractor with the one from
`conv_hyperparams_fn`.
Raises:
ValueError: upon invalid `pad_to_multiple` values.
"""
if pad_to_multiple != 1:
raise ValueError('Embedded-specific SSD only supports `pad_to_multiple` '
'of 1.')
super(EmbeddedSSDMobileNetV1FeatureExtractor, self).__init__(
is_training, depth_multiplier, min_depth, pad_to_multiple,
conv_hyperparams_fn, reuse_weights, use_explicit_padding, use_depthwise,
override_base_feature_extractor_hyperparams)
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:42,代碼來源:embedded_ssd_mobilenet_v1_feature_extractor.py
示例9: __init__
# 需要導入模塊: from object_detection.utils import ops [as 別名]
# 或者: from object_detection.utils.ops import pad_to_multiple [as 別名]
def __init__(self,
is_training,
depth_multiplier,
min_depth,
pad_to_multiple,
conv_hyperparams_fn,
reuse_weights=None,
use_explicit_padding=False,
use_depthwise=False,
override_base_feature_extractor_hyperparams=False):
"""MobileNetV1 Feature Extractor for SSD Models.
Args:
is_training: whether the network is in training mode.
depth_multiplier: float depth multiplier for feature extractor.
min_depth: minimum feature extractor depth.
pad_to_multiple: the nearest multiple to zero pad the input height and
width dimensions to.
conv_hyperparams_fn: A function to construct tf slim arg_scope for conv2d
and separable_conv2d ops in the layers that are added on top of the
base feature extractor.
reuse_weights: Whether to reuse variables. Default is None.
use_explicit_padding: Use 'VALID' padding for convolutions, but prepad
inputs so that the output dimensions are the same as if 'SAME' padding
were used.
use_depthwise: Whether to use depthwise convolutions. Default is False.
override_base_feature_extractor_hyperparams: Whether to override
hyperparameters of the base feature extractor with the one from
`conv_hyperparams_fn`.
"""
super(SSDMobileNetV1FeatureExtractor, self).__init__(
is_training=is_training,
depth_multiplier=depth_multiplier,
min_depth=min_depth,
pad_to_multiple=pad_to_multiple,
conv_hyperparams_fn=conv_hyperparams_fn,
reuse_weights=reuse_weights,
use_explicit_padding=use_explicit_padding,
use_depthwise=use_depthwise,
override_base_feature_extractor_hyperparams=
override_base_feature_extractor_hyperparams)
示例10: extract_features
# 需要導入模塊: from object_detection.utils import ops [as 別名]
# 或者: from object_detection.utils.ops import pad_to_multiple [as 別名]
def extract_features(self, preprocessed_inputs):
"""Extract features from preprocessed inputs.
Args:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
feature_maps: a list of tensors where the ith tensor has shape
[batch, height_i, width_i, depth_i]
"""
preprocessed_inputs = shape_utils.check_min_image_dim(
33, preprocessed_inputs)
feature_map_layout = {
'from_layer': ['Mixed_4c', 'Mixed_5c', '', '', '', ''],
'layer_depth': [-1, -1, 512, 256, 256, 128],
'use_explicit_padding': self._use_explicit_padding,
'use_depthwise': self._use_depthwise,
}
with slim.arg_scope(self._conv_hyperparams_fn()):
with tf.variable_scope('InceptionV2',
reuse=self._reuse_weights) as scope:
_, image_features = inception_v2.inception_v2_base(
ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple),
final_endpoint='Mixed_5c',
min_depth=self._min_depth,
depth_multiplier=self._depth_multiplier,
scope=scope)
feature_maps = feature_map_generators.multi_resolution_feature_maps(
feature_map_layout=feature_map_layout,
depth_multiplier=self._depth_multiplier,
min_depth=self._min_depth,
insert_1x1_conv=True,
image_features=image_features)
return feature_maps.values()
示例11: __init__
# 需要導入模塊: from object_detection.utils import ops [as 別名]
# 或者: from object_detection.utils.ops import pad_to_multiple [as 別名]
def __init__(self,
is_training,
depth_multiplier,
min_depth,
pad_to_multiple,
conv_hyperparams,
batch_norm_trainable=True,
reuse_weights=None,
use_explicit_padding=False,
use_depthwise=False):
"""MobileNetV1 Feature Extractor for Embedded-friendly SSD Models.
Args:
is_training: whether the network is in training mode.
depth_multiplier: float depth multiplier for feature extractor.
min_depth: minimum feature extractor depth.
pad_to_multiple: the nearest multiple to zero pad the input height and
width dimensions to. For EmbeddedSSD it must be set to 1.
conv_hyperparams: tf slim arg_scope for conv2d and separable_conv2d ops.
batch_norm_trainable: Whether to update batch norm parameters during
training or not. When training with a small batch size
(e.g. 1), it is desirable to disable batch norm update and use
pretrained batch norm params.
reuse_weights: Whether to reuse variables. Default is None.
use_explicit_padding: Whether to use explicit padding when extracting
features. Default is False.
use_depthwise: Whether to use depthwise convolutions. Default is False.
Raises:
ValueError: upon invalid `pad_to_multiple` values.
"""
if pad_to_multiple != 1:
raise ValueError('Embedded-specific SSD only supports `pad_to_multiple` '
'of 1.')
super(EmbeddedSSDMobileNetV1FeatureExtractor, self).__init__(
is_training, depth_multiplier, min_depth, pad_to_multiple,
conv_hyperparams, batch_norm_trainable, reuse_weights,
use_explicit_padding, use_depthwise)
開發者ID:cagbal,項目名稱:ros_people_object_detection_tensorflow,代碼行數:41,代碼來源:embedded_ssd_mobilenet_v1_feature_extractor.py
示例12: __init__
# 需要導入模塊: from object_detection.utils import ops [as 別名]
# 或者: from object_detection.utils.ops import pad_to_multiple [as 別名]
def __init__(self,
is_training,
depth_multiplier,
min_depth,
pad_to_multiple,
conv_hyperparams,
batch_norm_trainable=True,
reuse_weights=None,
use_explicit_padding=False,
use_depthwise=False):
"""MobileNetV1 Feature Extractor for SSD Models.
Args:
is_training: whether the network is in training mode.
depth_multiplier: float depth multiplier for feature extractor.
min_depth: minimum feature extractor depth.
pad_to_multiple: the nearest multiple to zero pad the input height and
width dimensions to.
conv_hyperparams: tf slim arg_scope for conv2d and separable_conv2d ops.
batch_norm_trainable: Whether to update batch norm parameters during
training or not. When training with a small batch size
(e.g. 1), it is desirable to disable batch norm update and use
pretrained batch norm params.
reuse_weights: Whether to reuse variables. Default is None.
use_explicit_padding: Use 'VALID' padding for convolutions, but prepad
inputs so that the output dimensions are the same as if 'SAME' padding
were used.
use_depthwise: Whether to use depthwise convolutions. Default is False.
"""
super(SSDMobileNetV1FeatureExtractor, self).__init__(
is_training, depth_multiplier, min_depth, pad_to_multiple,
conv_hyperparams, batch_norm_trainable, reuse_weights,
use_explicit_padding, use_depthwise)
開發者ID:cagbal,項目名稱:ros_people_object_detection_tensorflow,代碼行數:35,代碼來源:ssd_mobilenet_v1_feature_extractor.py
示例13: __init__
# 需要導入模塊: from object_detection.utils import ops [as 別名]
# 或者: from object_detection.utils.ops import pad_to_multiple [as 別名]
def __init__(self,
is_training,
depth_multiplier,
min_depth,
pad_to_multiple,
conv_hyperparams,
batch_norm_trainable=True,
reuse_weights=None,
use_explicit_padding=False,
use_depthwise=False):
"""Resnet101 v1 FPN Feature Extractor for SSD Models.
Args:
is_training: whether the network is in training mode.
depth_multiplier: float depth multiplier for feature extractor.
min_depth: minimum feature extractor depth.
pad_to_multiple: the nearest multiple to zero pad the input height and
width dimensions to.
conv_hyperparams: tf slim arg_scope for conv2d and separable_conv2d ops.
batch_norm_trainable: Whether to update batch norm parameters during
training or not. When training with a small batch size
(e.g. 1), it is desirable to disable batch norm update and use
pretrained batch norm params.
reuse_weights: Whether to reuse variables. Default is None.
use_explicit_padding: Whether to use explicit padding when extracting
features. Default is False. UNUSED currently.
use_depthwise: Whether to use depthwise convolutions. UNUSED currently.
"""
super(SSDResnet101V1FpnFeatureExtractor, self).__init__(
is_training, depth_multiplier, min_depth, pad_to_multiple,
conv_hyperparams, resnet_v1.resnet_v1_101, 'resnet_v1_101', 'fpn',
batch_norm_trainable, reuse_weights, use_explicit_padding)
開發者ID:cagbal,項目名稱:ros_people_object_detection_tensorflow,代碼行數:34,代碼來源:ssd_resnet_v1_fpn_feature_extractor.py
示例14: __init__
# 需要導入模塊: from object_detection.utils import ops [as 別名]
# 或者: from object_detection.utils.ops import pad_to_multiple [as 別名]
def __init__(self,
is_training,
depth_multiplier,
min_depth,
pad_to_multiple,
conv_hyperparams,
batch_norm_trainable=True,
reuse_weights=None,
use_explicit_padding=False,
use_depthwise=False):
"""InceptionV2 Feature Extractor for SSD Models.
Args:
is_training: whether the network is in training mode.
depth_multiplier: float depth multiplier for feature extractor.
min_depth: minimum feature extractor depth.
pad_to_multiple: the nearest multiple to zero pad the input height and
width dimensions to.
conv_hyperparams: tf slim arg_scope for conv2d and separable_conv2d ops.
batch_norm_trainable: Whether to update batch norm parameters during
training or not. When training with a small batch size
(e.g. 1), it is desirable to disable batch norm update and use
pretrained batch norm params.
reuse_weights: Whether to reuse variables. Default is None.
use_explicit_padding: Whether to use explicit padding when extracting
features. Default is False.
use_depthwise: Whether to use depthwise convolutions. Default is False.
"""
super(SSDInceptionV2FeatureExtractor, self).__init__(
is_training, depth_multiplier, min_depth, pad_to_multiple,
conv_hyperparams, batch_norm_trainable, reuse_weights,
use_explicit_padding, use_depthwise)
開發者ID:cagbal,項目名稱:ros_people_object_detection_tensorflow,代碼行數:34,代碼來源:ssd_inception_v2_feature_extractor.py
示例15: extract_features
# 需要導入模塊: from object_detection.utils import ops [as 別名]
# 或者: from object_detection.utils.ops import pad_to_multiple [as 別名]
def extract_features(self, preprocessed_inputs):
"""Extract features from preprocessed inputs.
Args:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
feature_maps: a list of tensors where the ith tensor has shape
[batch, height_i, width_i, depth_i]
"""
preprocessed_inputs = shape_utils.check_min_image_dim(
33, preprocessed_inputs)
feature_map_layout = {
'from_layer': ['Mixed_4c', 'Mixed_5c', '', '', '', ''],
'layer_depth': [-1, -1, 512, 256, 256, 128],
'use_explicit_padding': self._use_explicit_padding,
'use_depthwise': self._use_depthwise,
}
with slim.arg_scope(self._conv_hyperparams):
with tf.variable_scope('InceptionV2',
reuse=self._reuse_weights) as scope:
_, image_features = inception_v2.inception_v2_base(
ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple),
final_endpoint='Mixed_5c',
min_depth=self._min_depth,
depth_multiplier=self._depth_multiplier,
scope=scope)
feature_maps = feature_map_generators.multi_resolution_feature_maps(
feature_map_layout=feature_map_layout,
depth_multiplier=self._depth_multiplier,
min_depth=self._min_depth,
insert_1x1_conv=True,
image_features=image_features)
return feature_maps.values()
開發者ID:cagbal,項目名稱:ros_people_object_detection_tensorflow,代碼行數:40,代碼來源:ssd_inception_v2_feature_extractor.py