當前位置: 首頁>>代碼示例>>Python>>正文


Python ops.normalize_to_target方法代碼示例

本文整理匯總了Python中object_detection.utils.ops.normalize_to_target方法的典型用法代碼示例。如果您正苦於以下問題:Python ops.normalize_to_target方法的具體用法?Python ops.normalize_to_target怎麽用?Python ops.normalize_to_target使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在object_detection.utils.ops的用法示例。


在下文中一共展示了ops.normalize_to_target方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_create_normalize_to_target

# 需要導入模塊: from object_detection.utils import ops [as 別名]
# 或者: from object_detection.utils.ops import normalize_to_target [as 別名]
def test_create_normalize_to_target(self):
    inputs = tf.random_uniform([5, 10, 12, 3])
    target_norm_value = 4.0
    dim = 3
    with self.test_session():
      output = ops.normalize_to_target(inputs, target_norm_value, dim)
      self.assertEqual(output.op.name, 'NormalizeToTarget/mul')
      var_name = tf.contrib.framework.get_variables()[0].name
      self.assertEqual(var_name, 'NormalizeToTarget/weights:0') 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:11,代碼來源:ops_test.py

示例2: test_invalid_dim

# 需要導入模塊: from object_detection.utils import ops [as 別名]
# 或者: from object_detection.utils.ops import normalize_to_target [as 別名]
def test_invalid_dim(self):
    inputs = tf.random_uniform([5, 10, 12, 3])
    target_norm_value = 4.0
    dim = 10
    with self.assertRaisesRegexp(
        ValueError,
        'dim must be non-negative but smaller than the input rank.'):
      ops.normalize_to_target(inputs, target_norm_value, dim) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:10,代碼來源:ops_test.py

示例3: test_invalid_target_norm_values

# 需要導入模塊: from object_detection.utils import ops [as 別名]
# 或者: from object_detection.utils.ops import normalize_to_target [as 別名]
def test_invalid_target_norm_values(self):
    inputs = tf.random_uniform([5, 10, 12, 3])
    target_norm_value = [4.0, 4.0]
    dim = 3
    with self.assertRaisesRegexp(
        ValueError, 'target_norm_value must be a float or a list of floats'):
      ops.normalize_to_target(inputs, target_norm_value, dim) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:9,代碼來源:ops_test.py

示例4: test_correct_output_shape

# 需要導入模塊: from object_detection.utils import ops [as 別名]
# 或者: from object_detection.utils.ops import normalize_to_target [as 別名]
def test_correct_output_shape(self):
    inputs = tf.random_uniform([5, 10, 12, 3])
    target_norm_value = 4.0
    dim = 3
    with self.test_session():
      output = ops.normalize_to_target(inputs, target_norm_value, dim)
      self.assertEqual(output.get_shape().as_list(),
                       inputs.get_shape().as_list()) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:10,代碼來源:ops_test.py

示例5: test_correct_initial_output_values

# 需要導入模塊: from object_detection.utils import ops [as 別名]
# 或者: from object_detection.utils.ops import normalize_to_target [as 別名]
def test_correct_initial_output_values(self):
    inputs = tf.constant([[[[3, 4], [7, 24]],
                           [[5, -12], [-1, 0]]]], tf.float32)
    target_norm_value = 10.0
    dim = 3
    expected_output = [[[[30/5.0, 40/5.0], [70/25.0, 240/25.0]],
                        [[50/13.0, -120/13.0], [-10, 0]]]]
    with self.test_session() as sess:
      normalized_inputs = ops.normalize_to_target(inputs, target_norm_value,
                                                  dim)
      sess.run(tf.global_variables_initializer())
      output = normalized_inputs.eval()
      self.assertAllClose(output, expected_output) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:15,代碼來源:ops_test.py


注:本文中的object_detection.utils.ops.normalize_to_target方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。