當前位置: 首頁>>代碼示例>>Python>>正文


Python np_box_mask_list_ops.iou方法代碼示例

本文整理匯總了Python中object_detection.utils.np_box_mask_list_ops.iou方法的典型用法代碼示例。如果您正苦於以下問題:Python np_box_mask_list_ops.iou方法的具體用法?Python np_box_mask_list_ops.iou怎麽用?Python np_box_mask_list_ops.iou使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在object_detection.utils.np_box_mask_list_ops的用法示例。


在下文中一共展示了np_box_mask_list_ops.iou方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_iou

# 需要導入模塊: from object_detection.utils import np_box_mask_list_ops [as 別名]
# 或者: from object_detection.utils.np_box_mask_list_ops import iou [as 別名]
def test_iou(self):
    iou = np_box_mask_list_ops.iou(self.box_mask_list1, self.box_mask_list2)
    expected_iou = np.array(
        [[1.0, 0.0, 8.0 / 25.0], [0.0, 9.0 / 16.0, 7.0 / 28.0]], dtype=float)
    self.assertAllClose(iou, expected_iou) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:7,代碼來源:np_box_mask_list_ops_test.py

示例2: _get_overlaps_and_scores_box_mode

# 需要導入模塊: from object_detection.utils import np_box_mask_list_ops [as 別名]
# 或者: from object_detection.utils.np_box_mask_list_ops import iou [as 別名]
def _get_overlaps_and_scores_box_mode(
      self,
      detected_boxes,
      detected_scores,
      groundtruth_boxes,
      groundtruth_is_group_of_list):
    """Computes overlaps and scores between detected and groudntruth boxes.

    Args:
      detected_boxes: A numpy array of shape [N, 4] representing detected box
          coordinates
      detected_scores: A 1-d numpy array of length N representing classification
          score
      groundtruth_boxes: A numpy array of shape [M, 4] representing ground truth
          box coordinates
      groundtruth_is_group_of_list: A boolean numpy array of length M denoting
          whether a ground truth box has group-of tag. If a groundtruth box
          is group-of box, every detection matching this box is ignored.

    Returns:
      iou: A float numpy array of size [num_detected_boxes, num_gt_boxes]. If
          gt_non_group_of_boxlist.num_boxes() == 0 it will be None.
      ioa: A float numpy array of size [num_detected_boxes, num_gt_boxes]. If
          gt_group_of_boxlist.num_boxes() == 0 it will be None.
      scores: The score of the detected boxlist.
      num_boxes: Number of non-maximum suppressed detected boxes.
    """
    detected_boxlist = np_box_list.BoxList(detected_boxes)
    detected_boxlist.add_field('scores', detected_scores)
    detected_boxlist = np_box_list_ops.non_max_suppression(
        detected_boxlist, self.nms_max_output_boxes, self.nms_iou_threshold)
    gt_non_group_of_boxlist = np_box_list.BoxList(
        groundtruth_boxes[~groundtruth_is_group_of_list])
    gt_group_of_boxlist = np_box_list.BoxList(
        groundtruth_boxes[groundtruth_is_group_of_list])
    iou = np_box_list_ops.iou(detected_boxlist, gt_non_group_of_boxlist)
    ioa = np.transpose(
        np_box_list_ops.ioa(gt_group_of_boxlist, detected_boxlist))
    scores = detected_boxlist.get_field('scores')
    num_boxes = detected_boxlist.num_boxes()
    return iou, ioa, scores, num_boxes 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:43,代碼來源:per_image_evaluation.py

示例3: _get_overlaps_and_scores_box_mode

# 需要導入模塊: from object_detection.utils import np_box_mask_list_ops [as 別名]
# 或者: from object_detection.utils.np_box_mask_list_ops import iou [as 別名]
def _get_overlaps_and_scores_box_mode(
      self,
      detected_boxes,
      detected_scores,
      groundtruth_boxes,
      groundtruth_is_group_of_list):
    """Computes overlaps and scores between detected and groudntruth boxes.

    Args:
      detected_boxes: A numpy array of shape [N, 4] representing detected box
          coordinates
      detected_scores: A 1-d numpy array of length N representing classification
          score
      groundtruth_boxes: A numpy array of shape [M, 4] representing ground truth
          box coordinates
      groundtruth_is_group_of_list: A boolean numpy array of length M denoting
          whether a ground truth box has group-of tag. If a groundtruth box
          is group-of box, every detection matching this box is ignored.

    Returns:
      iou: A float numpy array of size [num_detected_boxes, num_gt_boxes]. If
          gt_non_group_of_boxlist.num_boxes() == 0 it will be None.
      ioa: A float numpy array of size [num_detected_boxes, num_gt_boxes]. If
          gt_group_of_boxlist.num_boxes() == 0 it will be None.
      scores: The score of the detected boxlist.
      num_boxes: Number of non-maximum suppressed detected boxes.
    """
    detected_boxlist = np_box_list.BoxList(detected_boxes)
    detected_boxlist.add_field('scores', detected_scores)
    detected_boxlist = np_box_list_ops.non_max_suppression(
        detected_boxlist, self.nms_max_output_boxes, self.nms_iou_threshold)
    gt_non_group_of_boxlist = np_box_list.BoxList(
        groundtruth_boxes[~groundtruth_is_group_of_list])
    gt_group_of_boxlist = np_box_list.BoxList(
        groundtruth_boxes[groundtruth_is_group_of_list])
    iou = np_box_list_ops.iou(detected_boxlist, gt_non_group_of_boxlist)
    ioa = np_box_list_ops.ioa(gt_group_of_boxlist, detected_boxlist)
    scores = detected_boxlist.get_field('scores')
    num_boxes = detected_boxlist.num_boxes()
    return iou, ioa, scores, num_boxes 
開發者ID:cagbal,項目名稱:ros_people_object_detection_tensorflow,代碼行數:42,代碼來源:per_image_evaluation.py

示例4: _get_overlaps_and_scores_box_mode

# 需要導入模塊: from object_detection.utils import np_box_mask_list_ops [as 別名]
# 或者: from object_detection.utils.np_box_mask_list_ops import iou [as 別名]
def _get_overlaps_and_scores_box_mode(self, detected_boxes, detected_scores,
                                        groundtruth_boxes,
                                        groundtruth_is_group_of_list):
    """Computes overlaps and scores between detected and groudntruth boxes.

    Args:
      detected_boxes: A numpy array of shape [N, 4] representing detected box
        coordinates
      detected_scores: A 1-d numpy array of length N representing classification
        score
      groundtruth_boxes: A numpy array of shape [M, 4] representing ground truth
        box coordinates
      groundtruth_is_group_of_list: A boolean numpy array of length M denoting
        whether a ground truth box has group-of tag. If a groundtruth box is
        group-of box, every detection matching this box is ignored.

    Returns:
      iou: A float numpy array of size [num_detected_boxes, num_gt_boxes]. If
          gt_non_group_of_boxlist.num_boxes() == 0 it will be None.
      ioa: A float numpy array of size [num_detected_boxes, num_gt_boxes]. If
          gt_group_of_boxlist.num_boxes() == 0 it will be None.
      scores: The score of the detected boxlist.
      num_boxes: Number of non-maximum suppressed detected boxes.
    """
    detected_boxlist = np_box_list.BoxList(detected_boxes)
    detected_boxlist.add_field('scores', detected_scores)
    detected_boxlist = np_box_list_ops.non_max_suppression(
        detected_boxlist, self.nms_max_output_boxes, self.nms_iou_threshold)
    gt_non_group_of_boxlist = np_box_list.BoxList(
        groundtruth_boxes[~groundtruth_is_group_of_list])
    gt_group_of_boxlist = np_box_list.BoxList(
        groundtruth_boxes[groundtruth_is_group_of_list])
    iou = np_box_list_ops.iou(detected_boxlist, gt_non_group_of_boxlist)
    ioa = np.transpose(
        np_box_list_ops.ioa(gt_group_of_boxlist, detected_boxlist))
    scores = detected_boxlist.get_field('scores')
    num_boxes = detected_boxlist.num_boxes()
    return iou, ioa, scores, num_boxes 
開發者ID:ShivangShekhar,項目名稱:Live-feed-object-device-identification-using-Tensorflow-and-OpenCV,代碼行數:40,代碼來源:per_image_evaluation.py


注:本文中的object_detection.utils.np_box_mask_list_ops.iou方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。