當前位置: 首頁>>代碼示例>>Python>>正文


Python np_box_list_ops.gather方法代碼示例

本文整理匯總了Python中object_detection.utils.np_box_list_ops.gather方法的典型用法代碼示例。如果您正苦於以下問題:Python np_box_list_ops.gather方法的具體用法?Python np_box_list_ops.gather怎麽用?Python np_box_list_ops.gather使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在object_detection.utils.np_box_list_ops的用法示例。


在下文中一共展示了np_box_list_ops.gather方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_gather_without_fields_specified

# 需要導入模塊: from object_detection.utils import np_box_list_ops [as 別名]
# 或者: from object_detection.utils.np_box_list_ops import gather [as 別名]
def test_gather_without_fields_specified(self):
    indices = np.array([2, 0, 1], dtype=int)
    boxlist = self.boxlist
    subboxlist = np_box_list_ops.gather(boxlist, indices)

    expected_scores = np.array([0.9, 0.5, 0.7], dtype=float)
    self.assertAllClose(expected_scores, subboxlist.get_field('scores'))

    expected_boxes = np.array([[0.0, 0.0, 20.0, 20.0], [3.0, 4.0, 6.0, 8.0],
                               [14.0, 14.0, 15.0, 15.0]],
                              dtype=float)
    self.assertAllClose(expected_boxes, subboxlist.get())

    expected_labels = np.array([[0, 0, 0, 0, 1], [0, 0, 0, 1, 0],
                                [0, 1, 0, 0, 0]],
                               dtype=int)
    self.assertAllClose(expected_labels, subboxlist.get_field('labels')) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:19,代碼來源:np_box_list_ops_test.py

示例2: test_gather_with_fields_specified

# 需要導入模塊: from object_detection.utils import np_box_list_ops [as 別名]
# 或者: from object_detection.utils.np_box_list_ops import gather [as 別名]
def test_gather_with_fields_specified(self):
    indices = np.array([2, 0, 1], dtype=int)
    boxlist = self.boxlist
    subboxlist = np_box_list_ops.gather(boxlist, indices, ['labels'])

    self.assertFalse(subboxlist.has_field('scores'))

    expected_boxes = np.array([[0.0, 0.0, 20.0, 20.0], [3.0, 4.0, 6.0, 8.0],
                               [14.0, 14.0, 15.0, 15.0]],
                              dtype=float)
    self.assertAllClose(expected_boxes, subboxlist.get())

    expected_labels = np.array([[0, 0, 0, 0, 1], [0, 0, 0, 1, 0],
                                [0, 1, 0, 0, 0]],
                               dtype=int)
    self.assertAllClose(expected_labels, subboxlist.get_field('labels')) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:18,代碼來源:np_box_list_ops_test.py

示例3: prune_non_overlapping_masks

# 需要導入模塊: from object_detection.utils import np_box_list_ops [as 別名]
# 或者: from object_detection.utils.np_box_list_ops import gather [as 別名]
def prune_non_overlapping_masks(box_mask_list1, box_mask_list2, minoverlap=0.0):
  """Prunes the boxes in list1 that overlap less than thresh with list2.

  For each mask in box_mask_list1, we want its IOA to be more than minoverlap
  with at least one of the masks in box_mask_list2. If it does not, we remove
  it. If the masks are not full size image, we do the pruning based on boxes.

  Args:
    box_mask_list1: np_box_mask_list.BoxMaskList holding N boxes and masks.
    box_mask_list2: np_box_mask_list.BoxMaskList holding M boxes and masks.
    minoverlap: Minimum required overlap between boxes, to count them as
                overlapping.

  Returns:
    A pruned box_mask_list with size [N', 4].
  """
  intersection_over_area = ioa(box_mask_list2, box_mask_list1)  # [M, N] tensor
  intersection_over_area = np.amax(intersection_over_area, axis=0)  # [N] tensor
  keep_bool = np.greater_equal(intersection_over_area, np.array(minoverlap))
  keep_inds = np.nonzero(keep_bool)[0]
  new_box_mask_list1 = gather(box_mask_list1, keep_inds)
  return new_box_mask_list1 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:24,代碼來源:np_box_mask_list_ops.py


注:本文中的object_detection.utils.np_box_list_ops.gather方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。