本文整理匯總了Python中object_detection.utils.np_box_list.BoxList方法的典型用法代碼示例。如果您正苦於以下問題:Python np_box_list.BoxList方法的具體用法?Python np_box_list.BoxList怎麽用?Python np_box_list.BoxList使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類object_detection.utils.np_box_list
的用法示例。
在下文中一共展示了np_box_list.BoxList方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_concatenate
# 需要導入模塊: from object_detection.utils import np_box_list [as 別名]
# 或者: from object_detection.utils.np_box_list import BoxList [as 別名]
def test_concatenate(self):
boxlist1 = np_box_list.BoxList(
np.array(
[[0.25, 0.25, 0.75, 0.75], [0.0, 0.0, 0.5, 0.75]], dtype=
np.float32))
boxlist2 = np_box_list.BoxList(
np.array(
[[0.5, 0.25, 1.0, 1.0], [0.0, 0.0, 1.0, 1.0]], dtype=np.float32))
boxlists = [boxlist1, boxlist2]
boxlist_concatenated = np_box_list_ops.concatenate(boxlists)
boxlist_concatenated_expected = np_box_list.BoxList(
np.array(
[[0.25, 0.25, 0.75, 0.75], [0.0, 0.0, 0.5, 0.75],
[0.5, 0.25, 1.0, 1.0], [0.0, 0.0, 1.0, 1.0]],
dtype=np.float32))
self.assertAllClose(boxlist_concatenated_expected.get(),
boxlist_concatenated.get())
示例2: scale
# 需要導入模塊: from object_detection.utils import np_box_list [as 別名]
# 或者: from object_detection.utils.np_box_list import BoxList [as 別名]
def scale(boxlist, y_scale, x_scale):
"""Scale box coordinates in x and y dimensions.
Args:
boxlist: BoxList holding N boxes
y_scale: float
x_scale: float
Returns:
boxlist: BoxList holding N boxes
"""
y_min, x_min, y_max, x_max = np.array_split(boxlist.get(), 4, axis=1)
y_min = y_scale * y_min
y_max = y_scale * y_max
x_min = x_scale * x_min
x_max = x_scale * x_max
scaled_boxlist = np_box_list.BoxList(np.hstack([y_min, x_min, y_max, x_max]))
fields = boxlist.get_extra_fields()
for field in fields:
extra_field_data = boxlist.get_field(field)
scaled_boxlist.add_field(field, extra_field_data)
return scaled_boxlist
示例3: _compute_is_aclass_correctly_detected_in_image
# 需要導入模塊: from object_detection.utils import np_box_list [as 別名]
# 或者: from object_detection.utils.np_box_list import BoxList [as 別名]
def _compute_is_aclass_correctly_detected_in_image(
self, detected_boxes, detected_scores, groundtruth_boxes):
"""Compute CorLoc score for a single class.
Args:
detected_boxes: A numpy array of shape [N, 4] representing detected box
coordinates
detected_scores: A 1-d numpy array of length N representing classification
score
groundtruth_boxes: A numpy array of shape [M, 4] representing ground truth
box coordinates
Returns:
is_class_correctly_detected_in_image: An integer 1 or 0 denoting whether a
class is correctly detected in the image or not
"""
if detected_boxes.size > 0:
if groundtruth_boxes.size > 0:
max_score_id = np.argmax(detected_scores)
detected_boxlist = np_box_list.BoxList(
np.expand_dims(detected_boxes[max_score_id, :], axis=0))
gt_boxlist = np_box_list.BoxList(groundtruth_boxes)
iou = np_box_list_ops.iou(detected_boxlist, gt_boxlist)
if np.max(iou) >= self.matching_iou_threshold:
return 1
return 0
示例4: setUp
# 需要導入模塊: from object_detection.utils import np_box_list [as 別名]
# 或者: from object_detection.utils.np_box_list import BoxList [as 別名]
def setUp(self):
boxes1 = np.array([[4.0, 3.0, 7.0, 5.0], [5.0, 6.0, 10.0, 7.0]],
dtype=float)
boxes2 = np.array([[3.0, 4.0, 6.0, 8.0], [14.0, 14.0, 15.0, 15.0],
[0.0, 0.0, 20.0, 20.0]],
dtype=float)
self.boxlist1 = np_box_list.BoxList(boxes1)
self.boxlist2 = np_box_list.BoxList(boxes2)
示例5: test_ioa
# 需要導入模塊: from object_detection.utils import np_box_list [as 別名]
# 或者: from object_detection.utils.np_box_list import BoxList [as 別名]
def test_ioa(self):
boxlist1 = np_box_list.BoxList(
np.array(
[[0.25, 0.25, 0.75, 0.75], [0.0, 0.0, 0.5, 0.75]], dtype=
np.float32))
boxlist2 = np_box_list.BoxList(
np.array(
[[0.5, 0.25, 1.0, 1.0], [0.0, 0.0, 1.0, 1.0]], dtype=np.float32))
ioa21 = np_box_list_ops.ioa(boxlist2, boxlist1)
expected_ioa21 = np.array([[0.5, 0.0],
[1.0, 1.0]],
dtype=np.float32)
self.assertAllClose(ioa21, expected_ioa21)
示例6: test_scale
# 需要導入模塊: from object_detection.utils import np_box_list [as 別名]
# 或者: from object_detection.utils.np_box_list import BoxList [as 別名]
def test_scale(self):
boxlist = np_box_list.BoxList(
np.array(
[[0.25, 0.25, 0.75, 0.75], [0.0, 0.0, 0.5, 0.75]], dtype=
np.float32))
boxlist_scaled = np_box_list_ops.scale(boxlist, 2.0, 3.0)
expected_boxlist_scaled = np_box_list.BoxList(
np.array(
[[0.5, 0.75, 1.5, 2.25], [0.0, 0.0, 1.0, 2.25]], dtype=np.float32))
self.assertAllClose(expected_boxlist_scaled.get(), boxlist_scaled.get())
示例7: test_prune_outside_window
# 需要導入模塊: from object_detection.utils import np_box_list [as 別名]
# 或者: from object_detection.utils.np_box_list import BoxList [as 別名]
def test_prune_outside_window(self):
boxlist = np_box_list.BoxList(
np.array(
[[0.25, 0.25, 0.75, 0.75], [0.0, 0.0, 0.5, 0.75],
[-0.2, -0.3, 0.7, 1.5]],
dtype=np.float32))
boxlist_pruned, _ = np_box_list_ops.prune_outside_window(
boxlist, [0.0, 0.0, 1.0, 1.0])
expected_boxlist_pruned = np_box_list.BoxList(
np.array(
[[0.25, 0.25, 0.75, 0.75], [0.0, 0.0, 0.5, 0.75]], dtype=
np.float32))
self.assertAllClose(expected_boxlist_pruned.get(), boxlist_pruned.get())
示例8: test_change_coordinate_frame
# 需要導入模塊: from object_detection.utils import np_box_list [as 別名]
# 或者: from object_detection.utils.np_box_list import BoxList [as 別名]
def test_change_coordinate_frame(self):
boxlist = np_box_list.BoxList(
np.array(
[[0.25, 0.25, 0.75, 0.75], [0.0, 0.0, 0.5, 0.75]], dtype=
np.float32))
boxlist_coord = np_box_list_ops.change_coordinate_frame(
boxlist, np.array([0, 0, 0.5, 0.5], dtype=np.float32))
expected_boxlist_coord = np_box_list.BoxList(
np.array([[0.5, 0.5, 1.5, 1.5], [0, 0, 1.0, 1.5]], dtype=np.float32))
self.assertAllClose(boxlist_coord.get(), expected_boxlist_coord.get())
示例9: test_filter_scores_greater_than
# 需要導入模塊: from object_detection.utils import np_box_list [as 別名]
# 或者: from object_detection.utils.np_box_list import BoxList [as 別名]
def test_filter_scores_greater_than(self):
boxlist = np_box_list.BoxList(
np.array(
[[0.25, 0.25, 0.75, 0.75], [0.0, 0.0, 0.5, 0.75]], dtype=
np.float32))
boxlist.add_field('scores', np.array([0.8, 0.2], np.float32))
boxlist_greater = np_box_list_ops.filter_scores_greater_than(boxlist, 0.5)
expected_boxlist_greater = np_box_list.BoxList(
np.array([[0.25, 0.25, 0.75, 0.75]], dtype=np.float32))
self.assertAllClose(boxlist_greater.get(), expected_boxlist_greater.get())
示例10: test_with_no_scores_field
# 需要導入模塊: from object_detection.utils import np_box_list [as 別名]
# 或者: from object_detection.utils.np_box_list import BoxList [as 別名]
def test_with_no_scores_field(self):
boxlist = np_box_list.BoxList(self._boxes)
max_output_size = 3
iou_threshold = 0.5
with self.assertRaises(ValueError):
np_box_list_ops.non_max_suppression(
boxlist, max_output_size, iou_threshold)
示例11: test_nms_disabled_max_output_size_equals_three
# 需要導入模塊: from object_detection.utils import np_box_list [as 別名]
# 或者: from object_detection.utils.np_box_list import BoxList [as 別名]
def test_nms_disabled_max_output_size_equals_three(self):
boxlist = np_box_list.BoxList(self._boxes)
boxlist.add_field('scores',
np.array([.9, .75, .6, .95, .2, .3], dtype=float))
max_output_size = 3
iou_threshold = 1. # No NMS
expected_boxes = np.array([[0, 10, 1, 11], [0, 0, 1, 1], [0, 0.1, 1, 1.1]],
dtype=float)
nms_boxlist = np_box_list_ops.non_max_suppression(
boxlist, max_output_size, iou_threshold)
self.assertAllClose(nms_boxlist.get(), expected_boxes)
示例12: test_select_from_three_clusters
# 需要導入模塊: from object_detection.utils import np_box_list [as 別名]
# 或者: from object_detection.utils.np_box_list import BoxList [as 別名]
def test_select_from_three_clusters(self):
boxlist = np_box_list.BoxList(self._boxes)
boxlist.add_field('scores',
np.array([.9, .75, .6, .95, .2, .3], dtype=float))
max_output_size = 3
iou_threshold = 0.5
expected_boxes = np.array([[0, 10, 1, 11], [0, 0, 1, 1], [0, 100, 1, 101]],
dtype=float)
nms_boxlist = np_box_list_ops.non_max_suppression(
boxlist, max_output_size, iou_threshold)
self.assertAllClose(nms_boxlist.get(), expected_boxes)
示例13: test_select_at_most_two_from_three_clusters
# 需要導入模塊: from object_detection.utils import np_box_list [as 別名]
# 或者: from object_detection.utils.np_box_list import BoxList [as 別名]
def test_select_at_most_two_from_three_clusters(self):
boxlist = np_box_list.BoxList(self._boxes)
boxlist.add_field('scores',
np.array([.9, .75, .6, .95, .5, .3], dtype=float))
max_output_size = 2
iou_threshold = 0.5
expected_boxes = np.array([[0, 10, 1, 11], [0, 0, 1, 1]], dtype=float)
nms_boxlist = np_box_list_ops.non_max_suppression(
boxlist, max_output_size, iou_threshold)
self.assertAllClose(nms_boxlist.get(), expected_boxes)
示例14: test_select_from_ten_indentical_boxes
# 需要導入模塊: from object_detection.utils import np_box_list [as 別名]
# 或者: from object_detection.utils.np_box_list import BoxList [as 別名]
def test_select_from_ten_indentical_boxes(self):
boxes = np.array(10 * [[0, 0, 1, 1]], dtype=float)
boxlist = np_box_list.BoxList(boxes)
boxlist.add_field('scores', np.array(10 * [0.8]))
iou_threshold = .5
max_output_size = 3
expected_boxes = np.array([[0, 0, 1, 1]], dtype=float)
nms_boxlist = np_box_list_ops.non_max_suppression(
boxlist, max_output_size, iou_threshold)
self.assertAllClose(nms_boxlist.get(), expected_boxes)
示例15: test_different_iou_threshold
# 需要導入模塊: from object_detection.utils import np_box_list [as 別名]
# 或者: from object_detection.utils.np_box_list import BoxList [as 別名]
def test_different_iou_threshold(self):
boxes = np.array([[0, 0, 20, 100], [0, 0, 20, 80], [200, 200, 210, 300],
[200, 200, 210, 250]],
dtype=float)
boxlist = np_box_list.BoxList(boxes)
boxlist.add_field('scores', np.array([0.9, 0.8, 0.7, 0.6]))
max_output_size = 4
iou_threshold = .4
expected_boxes = np.array([[0, 0, 20, 100],
[200, 200, 210, 300],],
dtype=float)
nms_boxlist = np_box_list_ops.non_max_suppression(
boxlist, max_output_size, iou_threshold)
self.assertAllClose(nms_boxlist.get(), expected_boxes)
iou_threshold = .5
expected_boxes = np.array([[0, 0, 20, 100], [200, 200, 210, 300],
[200, 200, 210, 250]],
dtype=float)
nms_boxlist = np_box_list_ops.non_max_suppression(
boxlist, max_output_size, iou_threshold)
self.assertAllClose(nms_boxlist.get(), expected_boxes)
iou_threshold = .8
expected_boxes = np.array([[0, 0, 20, 100], [0, 0, 20, 80],
[200, 200, 210, 300], [200, 200, 210, 250]],
dtype=float)
nms_boxlist = np_box_list_ops.non_max_suppression(
boxlist, max_output_size, iou_threshold)
self.assertAllClose(nms_boxlist.get(), expected_boxes)