當前位置: 首頁>>代碼示例>>Python>>正文


Python learning_schedules.manual_stepping方法代碼示例

本文整理匯總了Python中object_detection.utils.learning_schedules.manual_stepping方法的典型用法代碼示例。如果您正苦於以下問題:Python learning_schedules.manual_stepping方法的具體用法?Python learning_schedules.manual_stepping怎麽用?Python learning_schedules.manual_stepping使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在object_detection.utils.learning_schedules的用法示例。


在下文中一共展示了learning_schedules.manual_stepping方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: testManualStepping

# 需要導入模塊: from object_detection.utils import learning_schedules [as 別名]
# 或者: from object_detection.utils.learning_schedules import manual_stepping [as 別名]
def testManualStepping(self):
    global_step = tf.placeholder(tf.int64, [])
    boundaries = [2, 3, 7]
    rates = [1.0, 2.0, 3.0, 4.0]
    exp_rates = [1.0, 1.0, 2.0, 3.0, 3.0, 3.0, 3.0, 4.0, 4.0, 4.0]
    learning_rate = learning_schedules.manual_stepping(global_step, boundaries,
                                                       rates)
    with self.test_session() as sess:
      output_rates = []
      for input_global_step in range(10):
        output_rate = sess.run(learning_rate,
                               feed_dict={global_step: input_global_step})
        output_rates.append(output_rate)
      self.assertAllClose(output_rates, exp_rates) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:16,代碼來源:learning_schedules_test.py

示例2: testManualStepping

# 需要導入模塊: from object_detection.utils import learning_schedules [as 別名]
# 或者: from object_detection.utils.learning_schedules import manual_stepping [as 別名]
def testManualStepping(self):
    def graph_fn(global_step):
      boundaries = [2, 3, 7]
      rates = [1.0, 2.0, 3.0, 4.0]
      learning_rate = learning_schedules.manual_stepping(
          global_step, boundaries, rates)
      assert learning_rate.op.name.endswith('learning_rate')
      return (learning_rate,)

    output_rates = [
        self.execute(graph_fn, [np.array(i).astype(np.int64)])
        for i in range(10)
    ]
    exp_rates = [1.0, 1.0, 2.0, 3.0, 3.0, 3.0, 3.0, 4.0, 4.0, 4.0]
    self.assertAllClose(output_rates, exp_rates) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:17,代碼來源:learning_schedules_test.py

示例3: testManualSteppingWithWarmup

# 需要導入模塊: from object_detection.utils import learning_schedules [as 別名]
# 或者: from object_detection.utils.learning_schedules import manual_stepping [as 別名]
def testManualSteppingWithWarmup(self):
    def graph_fn(global_step):
      boundaries = [4, 6, 8]
      rates = [0.02, 0.10, 0.01, 0.001]
      learning_rate = learning_schedules.manual_stepping(
          global_step, boundaries, rates, warmup=True)
      assert learning_rate.op.name.endswith('learning_rate')
      return (learning_rate,)

    output_rates = [
        self.execute(graph_fn, [np.array(i).astype(np.int64)])
        for i in range(9)
    ]
    exp_rates = [0.02, 0.04, 0.06, 0.08, 0.10, 0.10, 0.01, 0.01, 0.001]
    self.assertAllClose(output_rates, exp_rates) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:17,代碼來源:learning_schedules_test.py

示例4: testManualSteppingWithZeroBoundaries

# 需要導入模塊: from object_detection.utils import learning_schedules [as 別名]
# 或者: from object_detection.utils.learning_schedules import manual_stepping [as 別名]
def testManualSteppingWithZeroBoundaries(self):
    def graph_fn(global_step):
      boundaries = []
      rates = [0.01]
      learning_rate = learning_schedules.manual_stepping(
          global_step, boundaries, rates)
      return (learning_rate,)

    output_rates = [
        self.execute(graph_fn, [np.array(i).astype(np.int64)])
        for i in range(4)
    ]
    exp_rates = [0.01] * 4
    self.assertAllClose(output_rates, exp_rates) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:16,代碼來源:learning_schedules_test.py


注:本文中的object_detection.utils.learning_schedules.manual_stepping方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。