當前位置: 首頁>>代碼示例>>Python>>正文


Python learning_schedules.cosine_decay_with_warmup方法代碼示例

本文整理匯總了Python中object_detection.utils.learning_schedules.cosine_decay_with_warmup方法的典型用法代碼示例。如果您正苦於以下問題:Python learning_schedules.cosine_decay_with_warmup方法的具體用法?Python learning_schedules.cosine_decay_with_warmup怎麽用?Python learning_schedules.cosine_decay_with_warmup使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在object_detection.utils.learning_schedules的用法示例。


在下文中一共展示了learning_schedules.cosine_decay_with_warmup方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: testCosineDecayWithWarmup

# 需要導入模塊: from object_detection.utils import learning_schedules [as 別名]
# 或者: from object_detection.utils.learning_schedules import cosine_decay_with_warmup [as 別名]
def testCosineDecayWithWarmup(self):
    def graph_fn(global_step):
      learning_rate_base = 1.0
      total_steps = 100
      warmup_learning_rate = 0.1
      warmup_steps = 9
      learning_rate = learning_schedules.cosine_decay_with_warmup(
          global_step, learning_rate_base, total_steps,
          warmup_learning_rate, warmup_steps)
      assert learning_rate.op.name.endswith('learning_rate')
      return (learning_rate,)
    exp_rates = [0.1, 0.5, 0.9, 1.0, 0]
    input_global_steps = [0, 4, 8, 9, 100]
    output_rates = [
        self.execute(graph_fn, [np.array(step).astype(np.int64)])
        for step in input_global_steps
    ]
    self.assertAllClose(output_rates, exp_rates) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:20,代碼來源:learning_schedules_test.py

示例2: testCosineDecayAfterTotalSteps

# 需要導入模塊: from object_detection.utils import learning_schedules [as 別名]
# 或者: from object_detection.utils.learning_schedules import cosine_decay_with_warmup [as 別名]
def testCosineDecayAfterTotalSteps(self):
    def graph_fn(global_step):
      learning_rate_base = 1.0
      total_steps = 100
      warmup_learning_rate = 0.1
      warmup_steps = 9
      learning_rate = learning_schedules.cosine_decay_with_warmup(
          global_step, learning_rate_base, total_steps,
          warmup_learning_rate, warmup_steps)
      assert learning_rate.op.name.endswith('learning_rate')
      return (learning_rate,)
    exp_rates = [0]
    input_global_steps = [101]
    output_rates = [
        self.execute(graph_fn, [np.array(step).astype(np.int64)])
        for step in input_global_steps
    ]
    self.assertAllClose(output_rates, exp_rates) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:20,代碼來源:learning_schedules_test.py

示例3: testCosineDecayWithHoldBaseLearningRateSteps

# 需要導入模塊: from object_detection.utils import learning_schedules [as 別名]
# 或者: from object_detection.utils.learning_schedules import cosine_decay_with_warmup [as 別名]
def testCosineDecayWithHoldBaseLearningRateSteps(self):
    def graph_fn(global_step):
      learning_rate_base = 1.0
      total_steps = 120
      warmup_learning_rate = 0.1
      warmup_steps = 9
      hold_base_rate_steps = 20
      learning_rate = learning_schedules.cosine_decay_with_warmup(
          global_step, learning_rate_base, total_steps,
          warmup_learning_rate, warmup_steps, hold_base_rate_steps)
      assert learning_rate.op.name.endswith('learning_rate')
      return (learning_rate,)
    exp_rates = [0.1, 0.5, 0.9, 1.0, 1.0, 1.0, 0.999702, 0.874255, 0.577365,
                 0.0]
    input_global_steps = [0, 4, 8, 9, 10, 29, 30, 50, 70, 120]
    output_rates = [
        self.execute(graph_fn, [np.array(step).astype(np.int64)])
        for step in input_global_steps
    ]
    self.assertAllClose(output_rates, exp_rates) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:22,代碼來源:learning_schedules_test.py

示例4: testCosineDecayWithWarmup

# 需要導入模塊: from object_detection.utils import learning_schedules [as 別名]
# 或者: from object_detection.utils.learning_schedules import cosine_decay_with_warmup [as 別名]
def testCosineDecayWithWarmup(self):
    global_step = tf.placeholder(tf.int32, [])
    learning_rate_base = 1.0
    total_steps = 100
    warmup_learning_rate = 0.1
    warmup_steps = 9
    input_global_steps = [0, 4, 8, 9, 100]
    exp_rates = [0.1, 0.5, 0.9, 1.0, 0]
    learning_rate = learning_schedules.cosine_decay_with_warmup(
        global_step, learning_rate_base, total_steps,
        warmup_learning_rate, warmup_steps)
    with self.test_session() as sess:
      output_rates = []
      for input_global_step in input_global_steps:
        output_rate = sess.run(learning_rate,
                               feed_dict={global_step: input_global_step})
        output_rates.append(output_rate)
      self.assertAllClose(output_rates, exp_rates) 
開發者ID:rky0930,項目名稱:yolo_v2,代碼行數:20,代碼來源:learning_schedules_test.py

示例5: testCosineDecayWithWarmup

# 需要導入模塊: from object_detection.utils import learning_schedules [as 別名]
# 或者: from object_detection.utils.learning_schedules import cosine_decay_with_warmup [as 別名]
def testCosineDecayWithWarmup(self):
    def graph_fn(global_step):
      learning_rate_base = 1.0
      total_steps = 100
      warmup_learning_rate = 0.1
      warmup_steps = 9
      learning_rate = learning_schedules.cosine_decay_with_warmup(
          global_step, learning_rate_base, total_steps,
          warmup_learning_rate, warmup_steps)
      return (learning_rate,)
    exp_rates = [0.1, 0.5, 0.9, 1.0, 0]
    input_global_steps = [0, 4, 8, 9, 100]
    output_rates = [
        self.execute(graph_fn, [np.array(step).astype(np.int64)])
        for step in input_global_steps
    ]
    self.assertAllClose(output_rates, exp_rates) 
開發者ID:scorelab,項目名稱:Elphas,代碼行數:19,代碼來源:learning_schedules_test.py


注:本文中的object_detection.utils.learning_schedules.cosine_decay_with_warmup方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。