本文整理匯總了Python中object_detection.utils.context_manager.IdentityContextManager方法的典型用法代碼示例。如果您正苦於以下問題:Python context_manager.IdentityContextManager方法的具體用法?Python context_manager.IdentityContextManager怎麽用?Python context_manager.IdentityContextManager使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類object_detection.utils.context_manager
的用法示例。
在下文中一共展示了context_manager.IdentityContextManager方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_identity_context_manager
# 需要導入模塊: from object_detection.utils import context_manager [as 別名]
# 或者: from object_detection.utils.context_manager import IdentityContextManager [as 別名]
def test_identity_context_manager(self):
with context_manager.IdentityContextManager() as identity_context:
self.assertIsNone(identity_context)
示例2: extract_features
# 需要導入模塊: from object_detection.utils import context_manager [as 別名]
# 或者: from object_detection.utils.context_manager import IdentityContextManager [as 別名]
def extract_features(self, preprocessed_inputs):
"""Extract features from preprocessed inputs.
Args:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
feature_maps: a list of tensors where the ith tensor has shape
[batch, height_i, width_i, depth_i]
"""
preprocessed_inputs = shape_utils.check_min_image_dim(
33, preprocessed_inputs)
with tf.variable_scope('MobilenetV1',
reuse=self._reuse_weights) as scope:
with slim.arg_scope(
mobilenet_v1.mobilenet_v1_arg_scope(
is_training=None, regularize_depthwise=True)):
with (slim.arg_scope(self._conv_hyperparams_fn())
if self._override_base_feature_extractor_hyperparams
else context_manager.IdentityContextManager()):
_, image_features = mobilenet_v1.mobilenet_v1_base(
ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple),
final_endpoint='Conv2d_13_pointwise',
min_depth=self._min_depth,
depth_multiplier=self._depth_multiplier,
use_explicit_padding=self._use_explicit_padding,
scope=scope)
with slim.arg_scope(self._conv_hyperparams_fn()):
feature_maps = feature_map_generators.pooling_pyramid_feature_maps(
base_feature_map_depth=0,
num_layers=6,
image_features={
'image_features': image_features['Conv2d_11_pointwise']
})
return feature_maps.values()
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:39,代碼來源:ssd_mobilenet_v1_ppn_feature_extractor.py
示例3: extract_features
# 需要導入模塊: from object_detection.utils import context_manager [as 別名]
# 或者: from object_detection.utils.context_manager import IdentityContextManager [as 別名]
def extract_features(self, preprocessed_inputs):
"""Extract features from preprocessed inputs.
Args:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
feature_maps: a list of tensors where the ith tensor has shape
[batch, height_i, width_i, depth_i]
"""
preprocessed_inputs = shape_utils.check_min_image_dim(
33, preprocessed_inputs)
with tf.variable_scope('MobilenetV1',
reuse=self._reuse_weights) as scope:
with slim.arg_scope(
mobilenet_v1.mobilenet_v1_arg_scope(
is_training=None, regularize_depthwise=True)):
with (slim.arg_scope(self._conv_hyperparams_fn())
if self._override_base_feature_extractor_hyperparams
else context_manager.IdentityContextManager()):
_, image_features = mobilenet_v1.mobilenet_v1_base(
ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple),
final_endpoint='Conv2d_13_pointwise',
min_depth=self._min_depth,
depth_multiplier=self._depth_multiplier,
use_explicit_padding=self._use_explicit_padding,
scope=scope)
with slim.arg_scope(self._conv_hyperparams_fn()):
feature_maps = feature_map_generators.pooling_pyramid_feature_maps(
base_feature_map_depth=0,
num_layers=6,
image_features={
'image_features': image_features['Conv2d_11_pointwise']
})
return list(feature_maps.values())
示例4: extract_features
# 需要導入模塊: from object_detection.utils import context_manager [as 別名]
# 或者: from object_detection.utils.context_manager import IdentityContextManager [as 別名]
def extract_features(self, preprocessed_inputs):
"""Extract features from preprocessed inputs.
Args:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
feature_maps: a list of tensors where the ith tensor has shape
[batch, height_i, width_i, depth_i]
Raises:
ValueError: depth multiplier is not supported.
"""
if self._depth_multiplier != 1.0:
raise ValueError('Depth multiplier not supported.')
preprocessed_inputs = shape_utils.check_min_image_dim(
129, preprocessed_inputs)
with tf.variable_scope(
self._resnet_scope_name, reuse=self._reuse_weights) as scope:
with slim.arg_scope(resnet_v1.resnet_arg_scope()):
with (slim.arg_scope(self._conv_hyperparams_fn())
if self._override_base_feature_extractor_hyperparams else
context_manager.IdentityContextManager()):
with slim.arg_scope(
[resnet_v1.bottleneck],
use_bounded_activations=self._use_bounded_activations):
_, activations = self._resnet_base_fn(
inputs=ops.pad_to_multiple(preprocessed_inputs,
self._pad_to_multiple),
num_classes=None,
is_training=None,
global_pool=False,
output_stride=None,
store_non_strided_activations=True,
scope=scope)
with slim.arg_scope(self._conv_hyperparams_fn()):
feature_maps = feature_map_generators.pooling_pyramid_feature_maps(
base_feature_map_depth=self._base_feature_map_depth,
num_layers=self._num_layers,
image_features={
'image_features': self._filter_features(activations)['block3']
})
return feature_maps.values()
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:49,代碼來源:ssd_resnet_v1_ppn_feature_extractor.py
示例5: extract_features
# 需要導入模塊: from object_detection.utils import context_manager [as 別名]
# 或者: from object_detection.utils.context_manager import IdentityContextManager [as 別名]
def extract_features(self, preprocessed_inputs):
"""Extract features from preprocessed inputs.
Args:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
feature_maps: a list of tensors where the ith tensor has shape
[batch, height_i, width_i, depth_i]
"""
feature_map_layout = {
'from_layer': ['Cell_7', 'Cell_11', '', '', '', ''],
'layer_depth': [-1, -1, 512, 256, 256, 128],
'use_explicit_padding': self._use_explicit_padding,
'use_depthwise': self._use_depthwise,
}
with slim.arg_scope(
pnasnet_large_arg_scope_for_detection(
is_batch_norm_training=self._is_training)):
with slim.arg_scope([slim.conv2d, slim.batch_norm, slim.separable_conv2d],
reuse=self._reuse_weights):
with (slim.arg_scope(self._conv_hyperparams_fn())
if self._override_base_feature_extractor_hyperparams else
context_manager.IdentityContextManager()):
_, image_features = pnasnet.build_pnasnet_large(
ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple),
num_classes=None,
is_training=self._is_training,
final_endpoint='Cell_11')
with tf.variable_scope('SSD_feature_maps', reuse=self._reuse_weights):
with slim.arg_scope(self._conv_hyperparams_fn()):
feature_maps = feature_map_generators.multi_resolution_feature_maps(
feature_map_layout=feature_map_layout,
depth_multiplier=self._depth_multiplier,
min_depth=self._min_depth,
insert_1x1_conv=True,
image_features=image_features)
return feature_maps.values()
示例6: extract_features
# 需要導入模塊: from object_detection.utils import context_manager [as 別名]
# 或者: from object_detection.utils.context_manager import IdentityContextManager [as 別名]
def extract_features(self, preprocessed_inputs):
"""Extract features from preprocessed inputs.
Args:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
feature_maps: a list of tensors where the ith tensor has shape
[batch, height_i, width_i, depth_i]
"""
preprocessed_inputs = shape_utils.check_min_image_dim(
33, preprocessed_inputs)
feature_map_layout = {
'from_layer': ['layer_15/expansion_output', 'layer_19', '', '', '', ''],
'layer_depth': [-1, -1, 512, 256, 256, 128],
'use_depthwise': self._use_depthwise,
'use_explicit_padding': self._use_explicit_padding,
}
with tf.variable_scope('MobilenetV2', reuse=self._reuse_weights) as scope:
with slim.arg_scope(
mobilenet_v2.training_scope(is_training=None, bn_decay=0.9997)), \
slim.arg_scope(
[mobilenet.depth_multiplier], min_depth=self._min_depth):
with (slim.arg_scope(self._conv_hyperparams_fn())
if self._override_base_feature_extractor_hyperparams else
context_manager.IdentityContextManager()):
_, image_features = mobilenet_v2.mobilenet_base(
ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple),
final_endpoint='layer_19',
depth_multiplier=self._depth_multiplier,
use_explicit_padding=self._use_explicit_padding,
scope=scope)
with slim.arg_scope(self._conv_hyperparams_fn()):
feature_maps = feature_map_generators.multi_resolution_feature_maps(
feature_map_layout=feature_map_layout,
depth_multiplier=self._depth_multiplier,
min_depth=self._min_depth,
insert_1x1_conv=True,
image_features=image_features)
return feature_maps.values()
示例7: build
# 需要導入模塊: from object_detection.utils import context_manager [as 別名]
# 或者: from object_detection.utils.context_manager import IdentityContextManager [as 別名]
def build(hyperparams_config, is_training):
"""Builds tf-slim arg_scope for convolution ops based on the config.
Returns an arg_scope to use for convolution ops containing weights
initializer, weights regularizer, activation function, batch norm function
and batch norm parameters based on the configuration.
Note that if the batch_norm parameteres are not specified in the config
(i.e. left to default) then batch norm is excluded from the arg_scope.
The batch norm parameters are set for updates based on `is_training` argument
and conv_hyperparams_config.batch_norm.train parameter. During training, they
are updated only if batch_norm.train parameter is true. However, during eval,
no updates are made to the batch norm variables. In both cases, their current
values are used during forward pass.
Args:
hyperparams_config: hyperparams.proto object containing
hyperparameters.
is_training: Whether the network is in training mode.
Returns:
arg_scope_fn: A function to construct tf-slim arg_scope containing
hyperparameters for ops.
Raises:
ValueError: if hyperparams_config is not of type hyperparams.Hyperparams.
"""
if not isinstance(hyperparams_config,
hyperparams_pb2.Hyperparams):
raise ValueError('hyperparams_config not of type '
'hyperparams_pb.Hyperparams.')
batch_norm = None
batch_norm_params = None
if hyperparams_config.HasField('batch_norm'):
batch_norm = slim.batch_norm
batch_norm_params = _build_batch_norm_params(
hyperparams_config.batch_norm, is_training)
affected_ops = [slim.conv2d, slim.separable_conv2d, slim.conv2d_transpose]
if hyperparams_config.HasField('op') and (
hyperparams_config.op == hyperparams_pb2.Hyperparams.FC):
affected_ops = [slim.fully_connected]
def scope_fn():
with (slim.arg_scope([slim.batch_norm], **batch_norm_params)
if batch_norm_params is not None else
context_manager.IdentityContextManager()):
with slim.arg_scope(
affected_ops,
weights_regularizer=_build_slim_regularizer(
hyperparams_config.regularizer),
weights_initializer=_build_initializer(
hyperparams_config.initializer),
activation_fn=_build_activation_fn(hyperparams_config.activation),
normalizer_fn=batch_norm) as sc:
return sc
return scope_fn
示例8: extract_features
# 需要導入模塊: from object_detection.utils import context_manager [as 別名]
# 或者: from object_detection.utils.context_manager import IdentityContextManager [as 別名]
def extract_features(self, preprocessed_inputs):
"""Extract features from preprocessed inputs.
Args:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
feature_maps: a list of tensors where the ith tensor has shape
[batch, height_i, width_i, depth_i]
"""
preprocessed_inputs = shape_utils.check_min_image_dim(
33, preprocessed_inputs)
feature_map_layout = {
'from_layer': ['Conv2d_11_pointwise', 'Conv2d_13_pointwise', '', '',
'', ''],
'layer_depth': [-1, -1, 512, 256, 256, 128],
'use_explicit_padding': self._use_explicit_padding,
'use_depthwise': self._use_depthwise,
}
with tf.variable_scope('MobilenetV1',
reuse=self._reuse_weights) as scope:
with slim.arg_scope(
mobilenet_v1.mobilenet_v1_arg_scope(
is_training=None, regularize_depthwise=True)):
with (slim.arg_scope(self._conv_hyperparams_fn())
if self._override_base_feature_extractor_hyperparams
else context_manager.IdentityContextManager()):
_, image_features = mobilenet_v1.mobilenet_v1_base(
ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple),
final_endpoint='Conv2d_13_pointwise',
min_depth=self._min_depth,
depth_multiplier=self._depth_multiplier,
use_explicit_padding=self._use_explicit_padding,
scope=scope)
with slim.arg_scope(self._conv_hyperparams_fn()):
feature_maps = feature_map_generators.multi_resolution_feature_maps(
feature_map_layout=feature_map_layout,
depth_multiplier=self._depth_multiplier,
min_depth=self._min_depth,
insert_1x1_conv=True,
image_features=image_features)
return feature_maps.values()
開發者ID:ambakick,項目名稱:Person-Detection-and-Tracking,代碼行數:48,代碼來源:ssd_mobilenet_v1_feature_extractor.py
示例9: extract_features
# 需要導入模塊: from object_detection.utils import context_manager [as 別名]
# 或者: from object_detection.utils.context_manager import IdentityContextManager [as 別名]
def extract_features(self, preprocessed_inputs):
"""Extract features from preprocessed inputs.
Args:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
feature_maps: a list of tensors where the ith tensor has shape
[batch, height_i, width_i, depth_i]
Raises:
ValueError: depth multiplier is not supported.
"""
if self._depth_multiplier != 1.0:
raise ValueError('Depth multiplier not supported.')
preprocessed_inputs = shape_utils.check_min_image_dim(
129, preprocessed_inputs)
with tf.variable_scope(
self._resnet_scope_name, reuse=self._reuse_weights) as scope:
with slim.arg_scope(resnet_v1.resnet_arg_scope()):
with (slim.arg_scope(self._conv_hyperparams_fn())
if self._override_base_feature_extractor_hyperparams else
context_manager.IdentityContextManager()):
_, image_features = self._resnet_base_fn(
inputs=ops.pad_to_multiple(preprocessed_inputs,
self._pad_to_multiple),
num_classes=None,
is_training=None,
global_pool=False,
output_stride=None,
store_non_strided_activations=True,
scope=scope)
image_features = self._filter_features(image_features)
with slim.arg_scope(self._conv_hyperparams_fn()):
with tf.variable_scope(self._fpn_scope_name,
reuse=self._reuse_weights):
fpn_features = feature_map_generators.fpn_top_down_feature_maps(
[(key, image_features[key])
for key in ['block2', 'block3', 'block4']],
depth=256)
last_feature_map = fpn_features['top_down_block4']
coarse_features = {}
for i in range(5, 7):
last_feature_map = slim.conv2d(
last_feature_map,
num_outputs=256,
kernel_size=[3, 3],
stride=2,
padding='SAME',
scope='bottom_up_block{}'.format(i))
coarse_features['bottom_up_block{}'.format(i)] = last_feature_map
return [fpn_features['top_down_block2'],
fpn_features['top_down_block3'],
fpn_features['top_down_block4'],
coarse_features['bottom_up_block5'],
coarse_features['bottom_up_block6']]
開發者ID:ambakick,項目名稱:Person-Detection-and-Tracking,代碼行數:61,代碼來源:ssd_resnet_v1_fpn_feature_extractor.py
示例10: build
# 需要導入模塊: from object_detection.utils import context_manager [as 別名]
# 或者: from object_detection.utils.context_manager import IdentityContextManager [as 別名]
def build(hyperparams_config, is_training):
"""Builds tf-slim arg_scope for convolution ops based on the config.
Returns an arg_scope to use for convolution ops containing weights
initializer, weights regularizer, activation function, batch norm function
and batch norm parameters based on the configuration.
Note that if the batch_norm parameteres are not specified in the config
(i.e. left to default) then batch norm is excluded from the arg_scope.
The batch norm parameters are set for updates based on `is_training` argument
and conv_hyperparams_config.batch_norm.train parameter. During training, they
are updated only if batch_norm.train parameter is true. However, during eval,
no updates are made to the batch norm variables. In both cases, their current
values are used during forward pass.
Args:
hyperparams_config: hyperparams.proto object containing
hyperparameters.
is_training: Whether the network is in training mode.
Returns:
arg_scope_fn: A function to construct tf-slim arg_scope containing
hyperparameters for ops.
Raises:
ValueError: if hyperparams_config is not of type hyperparams.Hyperparams.
"""
if not isinstance(hyperparams_config,
hyperparams_pb2.Hyperparams):
raise ValueError('hyperparams_config not of type '
'hyperparams_pb.Hyperparams.')
batch_norm = None
batch_norm_params = None
if hyperparams_config.HasField('batch_norm'):
batch_norm = slim.batch_norm
batch_norm_params = _build_batch_norm_params(
hyperparams_config.batch_norm, is_training)
affected_ops = [slim.conv2d, slim.separable_conv2d, slim.conv2d_transpose]
if hyperparams_config.HasField('op') and (
hyperparams_config.op == hyperparams_pb2.Hyperparams.FC):
affected_ops = [slim.fully_connected]
def scope_fn():
with (slim.arg_scope([slim.batch_norm], **batch_norm_params)
if batch_norm_params is not None else
context_manager.IdentityContextManager()):
with slim.arg_scope(
affected_ops,
weights_regularizer=_build_regularizer(
hyperparams_config.regularizer),
weights_initializer=_build_initializer(
hyperparams_config.initializer),
activation_fn=_build_activation_fn(hyperparams_config.activation),
normalizer_fn=batch_norm) as sc:
return sc
return scope_fn
示例11: extract_features
# 需要導入模塊: from object_detection.utils import context_manager [as 別名]
# 或者: from object_detection.utils.context_manager import IdentityContextManager [as 別名]
def extract_features(self, preprocessed_inputs):
"""Extract features from preprocessed inputs.
Args:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
feature_maps: a list of tensors where the ith tensor has shape
[batch, height_i, width_i, depth_i]
"""
preprocessed_inputs = shape_utils.check_min_image_dim(
33, preprocessed_inputs)
feature_map_layout = {
'from_layer': ['layer_15/expansion_output', 'layer_19', '', '', '', ''],
'layer_depth': [-1, -1, 512, 256, 256, 128],
'use_depthwise': self._use_depthwise,
'use_explicit_padding': self._use_explicit_padding,
}
with tf.variable_scope('MobilenetV2', reuse=self._reuse_weights) as scope:
with slim.arg_scope(
mobilenet_v2.training_scope(is_training=None, bn_decay=0.9997)), \
slim.arg_scope(
[mobilenet.depth_multiplier], min_depth=self._min_depth):
with (slim.arg_scope(self._conv_hyperparams_fn())
if self._override_base_feature_extractor_hyperparams else
context_manager.IdentityContextManager()):
# TODO(b/68150321): Enable fused batch norm once quantization
# supports it.
with slim.arg_scope([slim.batch_norm], fused=False):
_, image_features = mobilenet_v2.mobilenet_base(
ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple),
final_endpoint='layer_19',
depth_multiplier=self._depth_multiplier,
use_explicit_padding=self._use_explicit_padding,
scope=scope)
with slim.arg_scope(self._conv_hyperparams_fn()):
# TODO(b/68150321): Enable fused batch norm once quantization
# supports it.
with slim.arg_scope([slim.batch_norm], fused=False):
feature_maps = feature_map_generators.multi_resolution_feature_maps(
feature_map_layout=feature_map_layout,
depth_multiplier=self._depth_multiplier,
min_depth=self._min_depth,
insert_1x1_conv=True,
image_features=image_features)
return feature_maps.values()
示例12: extract_features
# 需要導入模塊: from object_detection.utils import context_manager [as 別名]
# 或者: from object_detection.utils.context_manager import IdentityContextManager [as 別名]
def extract_features(self, preprocessed_inputs):
"""Extract features from preprocessed inputs.
Args:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
feature_maps: a list of tensors where the ith tensor has shape
[batch, height_i, width_i, depth_i]
"""
preprocessed_inputs = shape_utils.check_min_image_dim(
33, preprocessed_inputs)
feature_map_layout = {
'from_layer': ['Conv2d_11_pointwise', 'Conv2d_13_pointwise', '', '',
'', ''],
'layer_depth': [-1, -1, 512, 256, 256, 128],
'use_explicit_padding': self._use_explicit_padding,
'use_depthwise': self._use_depthwise,
}
with tf.variable_scope('MobilenetV1',
reuse=self._reuse_weights) as scope:
with slim.arg_scope(
mobilenet_v1.mobilenet_v1_arg_scope(
is_training=None, regularize_depthwise=True)):
with (slim.arg_scope(self._conv_hyperparams_fn())
if self._override_base_feature_extractor_hyperparams
else context_manager.IdentityContextManager()):
# TODO(skligys): Enable fused batch norm once quantization supports it.
with slim.arg_scope([slim.batch_norm], fused=False):
_, image_features = mobilenet_v1.mobilenet_v1_base(
ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple),
final_endpoint='Conv2d_13_pointwise',
min_depth=self._min_depth,
depth_multiplier=self._depth_multiplier,
use_explicit_padding=self._use_explicit_padding,
scope=scope)
with slim.arg_scope(self._conv_hyperparams_fn()):
# TODO(skligys): Enable fused batch norm once quantization supports it.
with slim.arg_scope([slim.batch_norm], fused=False):
feature_maps = feature_map_generators.multi_resolution_feature_maps(
feature_map_layout=feature_map_layout,
depth_multiplier=self._depth_multiplier,
min_depth=self._min_depth,
insert_1x1_conv=True,
image_features=image_features)
return feature_maps.values()
示例13: extract_features
# 需要導入模塊: from object_detection.utils import context_manager [as 別名]
# 或者: from object_detection.utils.context_manager import IdentityContextManager [as 別名]
def extract_features(self, preprocessed_inputs):
"""Extract features from preprocessed inputs.
Args:
preprocessed_inputs: a [batch, height, width, channels] float tensor
representing a batch of images.
Returns:
feature_maps: a list of tensors where the ith tensor has shape
[batch, height_i, width_i, depth_i]
Raises:
ValueError: depth multiplier is not supported.
"""
if self._depth_multiplier != 1.0:
raise ValueError('Depth multiplier not supported.')
preprocessed_inputs = shape_utils.check_min_image_dim(
129, preprocessed_inputs)
with tf.variable_scope(
self._resnet_scope_name, reuse=self._reuse_weights) as scope:
with slim.arg_scope(resnet_v1.resnet_arg_scope()):
with (slim.arg_scope(self._conv_hyperparams_fn())
if self._override_base_feature_extractor_hyperparams else
context_manager.IdentityContextManager()):
_, image_features = self._resnet_base_fn(
inputs=ops.pad_to_multiple(preprocessed_inputs,
self._pad_to_multiple),
num_classes=None,
is_training=None,
global_pool=False,
output_stride=None,
store_non_strided_activations=True,
scope=scope)
image_features = self._filter_features(image_features)
last_feature_map = image_features['block4']
with tf.variable_scope(self._fpn_scope_name, reuse=self._reuse_weights):
with slim.arg_scope(self._conv_hyperparams_fn()):
for i in range(5, 7):
last_feature_map = slim.conv2d(
last_feature_map,
num_outputs=256,
kernel_size=[3, 3],
stride=2,
padding='SAME',
scope='block{}'.format(i))
image_features['bottomup_{}'.format(i)] = last_feature_map
feature_maps = feature_map_generators.fpn_top_down_feature_maps(
[
image_features[key] for key in
['block2', 'block3', 'block4', 'bottomup_5', 'bottomup_6']
],
depth=256,
scope='top_down_features')
return feature_maps.values()