當前位置: 首頁>>代碼示例>>Python>>正文


Python config_util.get_image_resizer_config方法代碼示例

本文整理匯總了Python中object_detection.utils.config_util.get_image_resizer_config方法的典型用法代碼示例。如果您正苦於以下問題:Python config_util.get_image_resizer_config方法的具體用法?Python config_util.get_image_resizer_config怎麽用?Python config_util.get_image_resizer_config使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在object_detection.utils.config_util的用法示例。


在下文中一共展示了config_util.get_image_resizer_config方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: testGetImageResizerConfig

# 需要導入模塊: from object_detection.utils import config_util [as 別名]
# 或者: from object_detection.utils.config_util import get_image_resizer_config [as 別名]
def  testGetImageResizerConfig(self):
    """Tests that number of classes can be retrieved."""
    model_config = model_pb2.DetectionModel()
    model_config.faster_rcnn.image_resizer.fixed_shape_resizer.height = 100
    model_config.faster_rcnn.image_resizer.fixed_shape_resizer.width = 300
    image_resizer_config = config_util.get_image_resizer_config(model_config)
    self.assertEqual(image_resizer_config.fixed_shape_resizer.height, 100)
    self.assertEqual(image_resizer_config.fixed_shape_resizer.width, 300) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:10,代碼來源:config_util_test.py

示例2: test_get_image_resizer_config

# 需要導入模塊: from object_detection.utils import config_util [as 別名]
# 或者: from object_detection.utils.config_util import get_image_resizer_config [as 別名]
def  test_get_image_resizer_config(self):
    """Tests that number of classes can be retrieved."""
    model_config = model_pb2.DetectionModel()
    model_config.faster_rcnn.image_resizer.fixed_shape_resizer.height = 100
    model_config.faster_rcnn.image_resizer.fixed_shape_resizer.width = 300
    image_resizer_config = config_util.get_image_resizer_config(model_config)
    self.assertEqual(image_resizer_config.fixed_shape_resizer.height, 100)
    self.assertEqual(image_resizer_config.fixed_shape_resizer.width, 300) 
開發者ID:cagbal,項目名稱:ros_people_object_detection_tensorflow,代碼行數:10,代碼來源:config_util_test.py

示例3: create_predict_input_fn

# 需要導入模塊: from object_detection.utils import config_util [as 別名]
# 或者: from object_detection.utils.config_util import get_image_resizer_config [as 別名]
def create_predict_input_fn(model_config, predict_input_config):
  """Creates a predict `input` function for `Estimator`.

  Args:
    model_config: A model_pb2.DetectionModel.
    predict_input_config: An input_reader_pb2.InputReader.

  Returns:
    `input_fn` for `Estimator` in PREDICT mode.
  """

  def _predict_input_fn(params=None):
    """Decodes serialized tf.Examples and returns `ServingInputReceiver`.

    Args:
      params: Parameter dictionary passed from the estimator.

    Returns:
      `ServingInputReceiver`.
    """
    del params
    example = tf.placeholder(dtype=tf.string, shape=[], name='tf_example')

    num_classes = config_util.get_number_of_classes(model_config)
    model = model_builder.build(model_config, is_training=False)
    image_resizer_config = config_util.get_image_resizer_config(model_config)
    image_resizer_fn = image_resizer_builder.build(image_resizer_config)

    transform_fn = functools.partial(
        transform_input_data, model_preprocess_fn=model.preprocess,
        image_resizer_fn=image_resizer_fn,
        num_classes=num_classes,
        data_augmentation_fn=None)

    decoder = tf_example_decoder.TfExampleDecoder(
        load_instance_masks=False,
        num_additional_channels=predict_input_config.num_additional_channels)
    input_dict = transform_fn(decoder.decode(example))
    images = tf.to_float(input_dict[fields.InputDataFields.image])
    images = tf.expand_dims(images, axis=0)
    true_image_shape = tf.expand_dims(
        input_dict[fields.InputDataFields.true_image_shape], axis=0)

    return tf.estimator.export.ServingInputReceiver(
        features={
            fields.InputDataFields.image: images,
            fields.InputDataFields.true_image_shape: true_image_shape},
        receiver_tensors={SERVING_FED_EXAMPLE_KEY: example})

  return _predict_input_fn 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:52,代碼來源:inputs.py

示例4: create_predict_input_fn

# 需要導入模塊: from object_detection.utils import config_util [as 別名]
# 或者: from object_detection.utils.config_util import get_image_resizer_config [as 別名]
def create_predict_input_fn(model_config):
  """Creates a predict `input` function for `Estimator`.

  Args:
    model_config: A model_pb2.DetectionModel.

  Returns:
    `input_fn` for `Estimator` in PREDICT mode.
  """

  def _predict_input_fn(params=None):
    """Decodes serialized tf.Examples and returns `ServingInputReceiver`.

    Args:
      params: Parameter dictionary passed from the estimator.

    Returns:
      `ServingInputReceiver`.
    """
    del params
    example = tf.placeholder(dtype=tf.string, shape=[], name='input_feature')

    num_classes = config_util.get_number_of_classes(model_config)
    model = model_builder.build(model_config, is_training=False)
    image_resizer_config = config_util.get_image_resizer_config(model_config)
    image_resizer_fn = image_resizer_builder.build(image_resizer_config)

    transform_fn = functools.partial(
        transform_input_data, model_preprocess_fn=model.preprocess,
        image_resizer_fn=image_resizer_fn,
        num_classes=num_classes,
        data_augmentation_fn=None)

    decoder = tf_example_decoder.TfExampleDecoder(load_instance_masks=False)
    input_dict = transform_fn(decoder.decode(example))
    images = tf.to_float(input_dict[fields.InputDataFields.image])
    images = tf.expand_dims(images, axis=0)
    true_image_shape = tf.expand_dims(
        input_dict[fields.InputDataFields.true_image_shape], axis=0)

    return tf.estimator.export.ServingInputReceiver(
        features={
            fields.InputDataFields.image: images,
            fields.InputDataFields.true_image_shape: true_image_shape},
        receiver_tensors={SERVING_FED_EXAMPLE_KEY: example})

  return _predict_input_fn 
開發者ID:cagbal,項目名稱:ros_people_object_detection_tensorflow,代碼行數:49,代碼來源:inputs.py

示例5: create_predict_input_fn

# 需要導入模塊: from object_detection.utils import config_util [as 別名]
# 或者: from object_detection.utils.config_util import get_image_resizer_config [as 別名]
def create_predict_input_fn(model_config):
  """Creates a predict `input` function for `Estimator`.

  Args:
    model_config: A model_pb2.DetectionModel.

  Returns:
    `input_fn` for `Estimator` in PREDICT mode.
  """

  def _predict_input_fn(params=None):
    """Decodes serialized tf.Examples and returns `ServingInputReceiver`.

    Args:
      params: Parameter dictionary passed from the estimator.

    Returns:
      `ServingInputReceiver`.
    """
    del params
    example = tf.placeholder(dtype=tf.string, shape=[], name='input_feature')

    num_classes = config_util.get_number_of_classes(model_config)
    model = model_builder.build(model_config, is_training=False)
    image_resizer_config = config_util.get_image_resizer_config(model_config)
    image_resizer_fn = image_resizer_builder.build(image_resizer_config)

    transform_fn = functools.partial(
        transform_input_data, model_preprocess_fn=model.preprocess,
        image_resizer_fn=image_resizer_fn,
        num_classes=num_classes,
        data_augmentation_fn=None)

    decoder = tf_example_decoder.TfExampleDecoder(load_instance_masks=False)
    input_dict = transform_fn(decoder.decode(example))
    images = tf.to_float(input_dict[fields.InputDataFields.image])
    images = tf.expand_dims(images, axis=0)

    return tf.estimator.export.ServingInputReceiver(
        features={fields.InputDataFields.image: images},
        receiver_tensors={SERVING_FED_EXAMPLE_KEY: example})

  return _predict_input_fn 
開發者ID:ShreyAmbesh,項目名稱:Traffic-Rule-Violation-Detection-System,代碼行數:45,代碼來源:inputs.py

示例6: create_predict_input_fn

# 需要導入模塊: from object_detection.utils import config_util [as 別名]
# 或者: from object_detection.utils.config_util import get_image_resizer_config [as 別名]
def create_predict_input_fn(model_config):
    """Creates a predict `input` function for `Estimator`.

    Args:
      model_config: A model_pb2.DetectionModel.

    Returns:
      `input_fn` for `Estimator` in PREDICT mode.
    """

    def _predict_input_fn(params=None):
        """Decodes serialized tf.Examples and returns `ServingInputReceiver`.

        Args:
          params: Parameter dictionary passed from the estimator.

        Returns:
          `ServingInputReceiver`.
        """
        del params
        example = tf.placeholder(
            dtype=tf.string,
            shape=[],
            name='input_feature')

        num_classes = config_util.get_number_of_classes(model_config)
        model = model_builder.build(model_config, is_training=False)
        image_resizer_config = config_util.get_image_resizer_config(
            model_config)
        image_resizer_fn = image_resizer_builder.build(image_resizer_config)

        transform_fn = functools.partial(
            transform_input_data, model_preprocess_fn=model.preprocess,
            image_resizer_fn=image_resizer_fn,
            num_classes=num_classes,
            data_augmentation_fn=None)

        decoder = tf_example_decoder.TfExampleDecoder(
            load_instance_masks=False)
        input_dict = transform_fn(decoder.decode(example))
        images = tf.to_float(input_dict[fields.InputDataFields.image])
        images = tf.expand_dims(images, axis=0)

        return tf.estimator.export.ServingInputReceiver(
            features={fields.InputDataFields.image: images},
            receiver_tensors={SERVING_FED_EXAMPLE_KEY: example})

    return _predict_input_fn 
開發者ID:scorelab,項目名稱:Elphas,代碼行數:50,代碼來源:inputs.py

示例7: create_predict_input_fn

# 需要導入模塊: from object_detection.utils import config_util [as 別名]
# 或者: from object_detection.utils.config_util import get_image_resizer_config [as 別名]
def create_predict_input_fn(model_config, predict_input_config):
  """Creates a predict `input` function for `Estimator`.

  Args:
    model_config: A model_pb2.DetectionModel.
    predict_input_config: An input_reader_pb2.InputReader.

  Returns:
    `input_fn` for `Estimator` in PREDICT mode.
  """

  def _predict_input_fn(params=None):
    """Decodes serialized tf.Examples and returns `ServingInputReceiver`.

    Args:
      params: Parameter dictionary passed from the estimator.

    Returns:
      `ServingInputReceiver`.
    """
    del params
    example = tf.placeholder(dtype=tf.string, shape=[], name='tf_example')

    num_classes = config_util.get_number_of_classes(model_config)
    model_preprocess_fn = INPUT_BUILDER_UTIL_MAP['model_build'](
        model_config, is_training=False).preprocess

    image_resizer_config = config_util.get_image_resizer_config(model_config)
    image_resizer_fn = image_resizer_builder.build(image_resizer_config)

    transform_fn = functools.partial(
        transform_input_data, model_preprocess_fn=model_preprocess_fn,
        image_resizer_fn=image_resizer_fn,
        num_classes=num_classes,
        data_augmentation_fn=None)

    decoder = tf_example_decoder.TfExampleDecoder(
        load_instance_masks=False,
        num_additional_channels=predict_input_config.num_additional_channels)
    input_dict = transform_fn(decoder.decode(example))
    images = tf.cast(input_dict[fields.InputDataFields.image], dtype=tf.float32)
    images = tf.expand_dims(images, axis=0)
    true_image_shape = tf.expand_dims(
        input_dict[fields.InputDataFields.true_image_shape], axis=0)

    return tf.estimator.export.ServingInputReceiver(
        features={
            fields.InputDataFields.image: images,
            fields.InputDataFields.true_image_shape: true_image_shape},
        receiver_tensors={SERVING_FED_EXAMPLE_KEY: example})

  return _predict_input_fn 
開發者ID:tensorflow,項目名稱:models,代碼行數:54,代碼來源:inputs.py


注:本文中的object_detection.utils.config_util.get_image_resizer_config方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。