本文整理匯總了Python中object_detection.utils.config_util.get_configs_from_pipeline_file方法的典型用法代碼示例。如果您正苦於以下問題:Python config_util.get_configs_from_pipeline_file方法的具體用法?Python config_util.get_configs_from_pipeline_file怎麽用?Python config_util.get_configs_from_pipeline_file使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類object_detection.utils.config_util
的用法示例。
在下文中一共展示了config_util.get_configs_from_pipeline_file方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: testUpdateMaskTypeForAllInputConfigs
# 需要導入模塊: from object_detection.utils import config_util [as 別名]
# 或者: from object_detection.utils.config_util import get_configs_from_pipeline_file [as 別名]
def testUpdateMaskTypeForAllInputConfigs(self):
original_mask_type = input_reader_pb2.NUMERICAL_MASKS
new_mask_type = input_reader_pb2.PNG_MASKS
pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
train_config = pipeline_config.train_input_reader
train_config.mask_type = original_mask_type
eval_1 = pipeline_config.eval_input_reader.add()
eval_1.mask_type = original_mask_type
eval_1.name = "eval_1"
eval_2 = pipeline_config.eval_input_reader.add()
eval_2.mask_type = original_mask_type
eval_2.name = "eval_2"
_write_config(pipeline_config, pipeline_config_path)
configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
override_dict = {"mask_type": new_mask_type}
configs = config_util.merge_external_params_with_configs(
configs, kwargs_dict=override_dict)
self.assertEqual(configs["train_input_config"].mask_type, new_mask_type)
for eval_input_config in configs["eval_input_configs"]:
self.assertEqual(eval_input_config.mask_type, new_mask_type)
示例2: test_get_configs_from_pipeline_file
# 需要導入模塊: from object_detection.utils import config_util [as 別名]
# 或者: from object_detection.utils.config_util import get_configs_from_pipeline_file [as 別名]
def test_get_configs_from_pipeline_file(self):
"""Test that proto configs can be read from pipeline config file."""
pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.model.faster_rcnn.num_classes = 10
pipeline_config.train_config.batch_size = 32
pipeline_config.train_input_reader.label_map_path = "path/to/label_map"
pipeline_config.eval_config.num_examples = 20
pipeline_config.eval_input_reader.add().queue_capacity = 100
_write_config(pipeline_config, pipeline_config_path)
configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
self.assertProtoEquals(pipeline_config.model, configs["model"])
self.assertProtoEquals(pipeline_config.train_config,
configs["train_config"])
self.assertProtoEquals(pipeline_config.train_input_reader,
configs["train_input_config"])
self.assertProtoEquals(pipeline_config.eval_config,
configs["eval_config"])
self.assertProtoEquals(pipeline_config.eval_input_reader,
configs["eval_input_configs"])
示例3: test_create_pipeline_proto_from_configs
# 需要導入模塊: from object_detection.utils import config_util [as 別名]
# 或者: from object_detection.utils.config_util import get_configs_from_pipeline_file [as 別名]
def test_create_pipeline_proto_from_configs(self):
"""Tests that proto can be reconstructed from configs dictionary."""
pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.model.faster_rcnn.num_classes = 10
pipeline_config.train_config.batch_size = 32
pipeline_config.train_input_reader.label_map_path = "path/to/label_map"
pipeline_config.eval_config.num_examples = 20
pipeline_config.eval_input_reader.add().queue_capacity = 100
_write_config(pipeline_config, pipeline_config_path)
configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
pipeline_config_reconstructed = (
config_util.create_pipeline_proto_from_configs(configs))
self.assertEqual(pipeline_config, pipeline_config_reconstructed)
示例4: test_save_pipeline_config
# 需要導入模塊: from object_detection.utils import config_util [as 別名]
# 或者: from object_detection.utils.config_util import get_configs_from_pipeline_file [as 別名]
def test_save_pipeline_config(self):
"""Tests that the pipeline config is properly saved to disk."""
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.model.faster_rcnn.num_classes = 10
pipeline_config.train_config.batch_size = 32
pipeline_config.train_input_reader.label_map_path = "path/to/label_map"
pipeline_config.eval_config.num_examples = 20
pipeline_config.eval_input_reader.add().queue_capacity = 100
config_util.save_pipeline_config(pipeline_config, self.get_temp_dir())
configs = config_util.get_configs_from_pipeline_file(
os.path.join(self.get_temp_dir(), "pipeline.config"))
pipeline_config_reconstructed = (
config_util.create_pipeline_proto_from_configs(configs))
self.assertEqual(pipeline_config, pipeline_config_reconstructed)
示例5: testNewMomentumOptimizerValue
# 需要導入模塊: from object_detection.utils import config_util [as 別名]
# 或者: from object_detection.utils.config_util import get_configs_from_pipeline_file [as 別名]
def testNewMomentumOptimizerValue(self):
"""Tests that new momentum value is updated appropriately."""
original_momentum_value = 0.4
hparams = tf.contrib.training.HParams(momentum_optimizer_value=1.1)
pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
optimizer_config = pipeline_config.train_config.optimizer.rms_prop_optimizer
optimizer_config.momentum_optimizer_value = original_momentum_value
_write_config(pipeline_config, pipeline_config_path)
configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
configs = config_util.merge_external_params_with_configs(configs, hparams)
optimizer_config = configs["train_config"].optimizer.rms_prop_optimizer
new_momentum_value = optimizer_config.momentum_optimizer_value
self.assertAlmostEqual(1.0, new_momentum_value) # Clipped to 1.0.
示例6: testNewClassificationLocalizationWeightRatio
# 需要導入模塊: from object_detection.utils import config_util [as 別名]
# 或者: from object_detection.utils.config_util import get_configs_from_pipeline_file [as 別名]
def testNewClassificationLocalizationWeightRatio(self):
"""Tests that the loss weight ratio is updated appropriately."""
original_localization_weight = 0.1
original_classification_weight = 0.2
new_weight_ratio = 5.0
hparams = tf.contrib.training.HParams(
classification_localization_weight_ratio=new_weight_ratio)
pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.model.ssd.loss.localization_weight = (
original_localization_weight)
pipeline_config.model.ssd.loss.classification_weight = (
original_classification_weight)
_write_config(pipeline_config, pipeline_config_path)
configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
configs = config_util.merge_external_params_with_configs(configs, hparams)
loss = configs["model"].ssd.loss
self.assertAlmostEqual(1.0, loss.localization_weight)
self.assertAlmostEqual(new_weight_ratio, loss.classification_weight)
示例7: testNewFocalLossParameters
# 需要導入模塊: from object_detection.utils import config_util [as 別名]
# 或者: from object_detection.utils.config_util import get_configs_from_pipeline_file [as 別名]
def testNewFocalLossParameters(self):
"""Tests that the loss weight ratio is updated appropriately."""
original_alpha = 1.0
original_gamma = 1.0
new_alpha = 0.3
new_gamma = 2.0
hparams = tf.contrib.training.HParams(
focal_loss_alpha=new_alpha, focal_loss_gamma=new_gamma)
pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
classification_loss = pipeline_config.model.ssd.loss.classification_loss
classification_loss.weighted_sigmoid_focal.alpha = original_alpha
classification_loss.weighted_sigmoid_focal.gamma = original_gamma
_write_config(pipeline_config, pipeline_config_path)
configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
configs = config_util.merge_external_params_with_configs(configs, hparams)
classification_loss = configs["model"].ssd.loss.classification_loss
self.assertAlmostEqual(new_alpha,
classification_loss.weighted_sigmoid_focal.alpha)
self.assertAlmostEqual(new_gamma,
classification_loss.weighted_sigmoid_focal.gamma)
示例8: testNewTrainInputPath
# 需要導入模塊: from object_detection.utils import config_util [as 別名]
# 或者: from object_detection.utils.config_util import get_configs_from_pipeline_file [as 別名]
def testNewTrainInputPath(self):
"""Tests that train input path can be overwritten with single file."""
original_train_path = ["path/to/data"]
new_train_path = "another/path/to/data"
pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
reader_config = pipeline_config.train_input_reader.tf_record_input_reader
reader_config.input_path.extend(original_train_path)
_write_config(pipeline_config, pipeline_config_path)
configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
override_dict = {"train_input_path": new_train_path}
configs = config_util.merge_external_params_with_configs(
configs, kwargs_dict=override_dict)
reader_config = configs["train_input_config"].tf_record_input_reader
final_path = reader_config.input_path
self.assertEqual([new_train_path], final_path)
示例9: testNewTrainInputPathList
# 需要導入模塊: from object_detection.utils import config_util [as 別名]
# 或者: from object_detection.utils.config_util import get_configs_from_pipeline_file [as 別名]
def testNewTrainInputPathList(self):
"""Tests that train input path can be overwritten with multiple files."""
original_train_path = ["path/to/data"]
new_train_path = ["another/path/to/data", "yet/another/path/to/data"]
pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
reader_config = pipeline_config.train_input_reader.tf_record_input_reader
reader_config.input_path.extend(original_train_path)
_write_config(pipeline_config, pipeline_config_path)
configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
override_dict = {"train_input_path": new_train_path}
configs = config_util.merge_external_params_with_configs(
configs, kwargs_dict=override_dict)
reader_config = configs["train_input_config"].tf_record_input_reader
final_path = reader_config.input_path
self.assertEqual(new_train_path, final_path)
示例10: testNewLabelMapPath
# 需要導入模塊: from object_detection.utils import config_util [as 別名]
# 或者: from object_detection.utils.config_util import get_configs_from_pipeline_file [as 別名]
def testNewLabelMapPath(self):
"""Tests that label map path can be overwritten in input readers."""
original_label_map_path = "path/to/original/label_map"
new_label_map_path = "path//to/new/label_map"
pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
train_input_reader = pipeline_config.train_input_reader
train_input_reader.label_map_path = original_label_map_path
eval_input_reader = pipeline_config.eval_input_reader.add()
eval_input_reader.label_map_path = original_label_map_path
_write_config(pipeline_config, pipeline_config_path)
configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
override_dict = {"label_map_path": new_label_map_path}
configs = config_util.merge_external_params_with_configs(
configs, kwargs_dict=override_dict)
self.assertEqual(new_label_map_path,
configs["train_input_config"].label_map_path)
for eval_input_config in configs["eval_input_configs"]:
self.assertEqual(new_label_map_path, eval_input_config.label_map_path)
示例11: testDontOverwriteEmptyLabelMapPath
# 需要導入模塊: from object_detection.utils import config_util [as 別名]
# 或者: from object_detection.utils.config_util import get_configs_from_pipeline_file [as 別名]
def testDontOverwriteEmptyLabelMapPath(self):
"""Tests that label map path will not by overwritten with empty string."""
original_label_map_path = "path/to/original/label_map"
new_label_map_path = ""
pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
train_input_reader = pipeline_config.train_input_reader
train_input_reader.label_map_path = original_label_map_path
eval_input_reader = pipeline_config.eval_input_reader.add()
eval_input_reader.label_map_path = original_label_map_path
_write_config(pipeline_config, pipeline_config_path)
configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
override_dict = {"label_map_path": new_label_map_path}
configs = config_util.merge_external_params_with_configs(
configs, kwargs_dict=override_dict)
self.assertEqual(original_label_map_path,
configs["train_input_config"].label_map_path)
self.assertEqual(original_label_map_path,
configs["eval_input_configs"][0].label_map_path)
示例12: testTrainShuffle
# 需要導入模塊: from object_detection.utils import config_util [as 別名]
# 或者: from object_detection.utils.config_util import get_configs_from_pipeline_file [as 別名]
def testTrainShuffle(self):
"""Tests that `train_shuffle` keyword arguments are applied correctly."""
original_shuffle = True
desired_shuffle = False
pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.train_input_reader.shuffle = original_shuffle
_write_config(pipeline_config, pipeline_config_path)
configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
override_dict = {"train_shuffle": desired_shuffle}
configs = config_util.merge_external_params_with_configs(
configs, kwargs_dict=override_dict)
train_shuffle = configs["train_input_config"].shuffle
self.assertEqual(desired_shuffle, train_shuffle)
示例13: testOverWriteRetainOriginalImages
# 需要導入模塊: from object_detection.utils import config_util [as 別名]
# 或者: from object_detection.utils.config_util import get_configs_from_pipeline_file [as 別名]
def testOverWriteRetainOriginalImages(self):
"""Tests that `train_shuffle` keyword arguments are applied correctly."""
original_retain_original_images = True
desired_retain_original_images = False
pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.eval_config.retain_original_images = (
original_retain_original_images)
_write_config(pipeline_config, pipeline_config_path)
configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
override_dict = {
"retain_original_images_in_eval": desired_retain_original_images
}
configs = config_util.merge_external_params_with_configs(
configs, kwargs_dict=override_dict)
retain_original_images = configs["eval_config"].retain_original_images
self.assertEqual(desired_retain_original_images, retain_original_images)
示例14: testOverwriteAllEvalSampling
# 需要導入模塊: from object_detection.utils import config_util [as 別名]
# 或者: from object_detection.utils.config_util import get_configs_from_pipeline_file [as 別名]
def testOverwriteAllEvalSampling(self):
original_num_eval_examples = 1
new_num_eval_examples = 10
pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.eval_input_reader.add().sample_1_of_n_examples = (
original_num_eval_examples)
pipeline_config.eval_input_reader.add().sample_1_of_n_examples = (
original_num_eval_examples)
_write_config(pipeline_config, pipeline_config_path)
configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
override_dict = {"sample_1_of_n_eval_examples": new_num_eval_examples}
configs = config_util.merge_external_params_with_configs(
configs, kwargs_dict=override_dict)
for eval_input_config in configs["eval_input_configs"]:
self.assertEqual(new_num_eval_examples,
eval_input_config.sample_1_of_n_examples)
示例15: testErrorOverwritingMultipleInputConfig
# 需要導入模塊: from object_detection.utils import config_util [as 別名]
# 或者: from object_detection.utils.config_util import get_configs_from_pipeline_file [as 別名]
def testErrorOverwritingMultipleInputConfig(self):
original_shuffle = False
new_shuffle = True
pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config")
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
eval_1 = pipeline_config.eval_input_reader.add()
eval_1.shuffle = original_shuffle
eval_1.name = "eval_1"
eval_2 = pipeline_config.eval_input_reader.add()
eval_2.shuffle = original_shuffle
eval_2.name = "eval_2"
_write_config(pipeline_config, pipeline_config_path)
configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
override_dict = {"eval_shuffle": new_shuffle}
with self.assertRaises(ValueError):
configs = config_util.merge_external_params_with_configs(
configs, kwargs_dict=override_dict)