當前位置: 首頁>>代碼示例>>Python>>正文


Python post_processing_pb2.PostProcessing方法代碼示例

本文整理匯總了Python中object_detection.protos.post_processing_pb2.PostProcessing方法的典型用法代碼示例。如果您正苦於以下問題:Python post_processing_pb2.PostProcessing方法的具體用法?Python post_processing_pb2.PostProcessing怎麽用?Python post_processing_pb2.PostProcessing使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在object_detection.protos.post_processing_pb2的用法示例。


在下文中一共展示了post_processing_pb2.PostProcessing方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_build_non_max_suppressor_with_correct_parameters

# 需要導入模塊: from object_detection.protos import post_processing_pb2 [as 別名]
# 或者: from object_detection.protos.post_processing_pb2 import PostProcessing [as 別名]
def test_build_non_max_suppressor_with_correct_parameters(self):
    post_processing_text_proto = """
      batch_non_max_suppression {
        score_threshold: 0.7
        iou_threshold: 0.6
        max_detections_per_class: 100
        max_total_detections: 300
      }
    """
    post_processing_config = post_processing_pb2.PostProcessing()
    text_format.Merge(post_processing_text_proto, post_processing_config)
    non_max_suppressor, _ = post_processing_builder.build(
        post_processing_config)
    self.assertEqual(non_max_suppressor.keywords['max_size_per_class'], 100)
    self.assertEqual(non_max_suppressor.keywords['max_total_size'], 300)
    self.assertAlmostEqual(non_max_suppressor.keywords['score_thresh'], 0.7)
    self.assertAlmostEqual(non_max_suppressor.keywords['iou_thresh'], 0.6) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:19,代碼來源:post_processing_builder_test.py

示例2: _build_score_converter

# 需要導入模塊: from object_detection.protos import post_processing_pb2 [as 別名]
# 或者: from object_detection.protos.post_processing_pb2 import PostProcessing [as 別名]
def _build_score_converter(score_converter_config):
  """Builds score converter based on the config.

  Builds one of [tf.identity, tf.sigmoid, tf.softmax] score converters based on
  the config.

  Args:
    score_converter_config: post_processing_pb2.PostProcessing.score_converter.

  Returns:
    Callable score converter op.

  Raises:
    ValueError: On unknown score converter.
  """
  if score_converter_config == post_processing_pb2.PostProcessing.IDENTITY:
    return tf.identity
  if score_converter_config == post_processing_pb2.PostProcessing.SIGMOID:
    return tf.sigmoid
  if score_converter_config == post_processing_pb2.PostProcessing.SOFTMAX:
    return tf.nn.softmax
  raise ValueError('Unknown score converter.') 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:24,代碼來源:post_processing_builder.py

示例3: test_build_identity_score_converter_with_logit_scale

# 需要導入模塊: from object_detection.protos import post_processing_pb2 [as 別名]
# 或者: from object_detection.protos.post_processing_pb2 import PostProcessing [as 別名]
def test_build_identity_score_converter_with_logit_scale(self):
    post_processing_text_proto = """
      score_converter: IDENTITY
      logit_scale: 2.0
    """
    post_processing_config = post_processing_pb2.PostProcessing()
    text_format.Merge(post_processing_text_proto, post_processing_config)
    _, score_converter = post_processing_builder.build(post_processing_config)
    self.assertEqual(score_converter.__name__, 'identity_with_logit_scale')

    inputs = tf.constant([1, 1], tf.float32)
    outputs = score_converter(inputs)
    with self.test_session() as sess:
      converted_scores = sess.run(outputs)
      expected_converted_scores = sess.run(tf.constant([.5, .5], tf.float32))
      self.assertAllClose(converted_scores, expected_converted_scores) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:18,代碼來源:post_processing_builder_test.py

示例4: _build_score_converter

# 需要導入模塊: from object_detection.protos import post_processing_pb2 [as 別名]
# 或者: from object_detection.protos.post_processing_pb2 import PostProcessing [as 別名]
def _build_score_converter(score_converter_config, logit_scale):
  """Builds score converter based on the config.

  Builds one of [tf.identity, tf.sigmoid, tf.softmax] score converters based on
  the config.

  Args:
    score_converter_config: post_processing_pb2.PostProcessing.score_converter.
    logit_scale: temperature to use for SOFTMAX score_converter.

  Returns:
    Callable score converter op.

  Raises:
    ValueError: On unknown score converter.
  """
  if score_converter_config == post_processing_pb2.PostProcessing.IDENTITY:
    return _score_converter_fn_with_logit_scale(tf.identity, logit_scale)
  if score_converter_config == post_processing_pb2.PostProcessing.SIGMOID:
    return _score_converter_fn_with_logit_scale(tf.sigmoid, logit_scale)
  if score_converter_config == post_processing_pb2.PostProcessing.SOFTMAX:
    return _score_converter_fn_with_logit_scale(tf.nn.softmax, logit_scale)
  raise ValueError('Unknown score converter.') 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:25,代碼來源:post_processing_builder.py

示例5: test_build_identity_score_converter

# 需要導入模塊: from object_detection.protos import post_processing_pb2 [as 別名]
# 或者: from object_detection.protos.post_processing_pb2 import PostProcessing [as 別名]
def test_build_identity_score_converter(self):
    post_processing_text_proto = """
      score_converter: IDENTITY
    """
    post_processing_config = post_processing_pb2.PostProcessing()
    text_format.Merge(post_processing_text_proto, post_processing_config)
    _, score_converter = post_processing_builder.build(post_processing_config)
    self.assertEqual(score_converter, tf.identity) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:10,代碼來源:post_processing_builder_test.py


注:本文中的object_detection.protos.post_processing_pb2.PostProcessing方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。