本文整理匯總了Python中object_detection.protos.model_pb2.DetectionModel方法的典型用法代碼示例。如果您正苦於以下問題:Python model_pb2.DetectionModel方法的具體用法?Python model_pb2.DetectionModel怎麽用?Python model_pb2.DetectionModel使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類object_detection.protos.model_pb2
的用法示例。
在下文中一共展示了model_pb2.DetectionModel方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: get_configs_from_pipeline_file
# 需要導入模塊: from object_detection.protos import model_pb2 [as 別名]
# 或者: from object_detection.protos.model_pb2 import DetectionModel [as 別名]
def get_configs_from_pipeline_file():
"""Reads evaluation configuration from a pipeline_pb2.TrainEvalPipelineConfig.
Reads evaluation config from file specified by pipeline_config_path flag.
Returns:
model_config: a model_pb2.DetectionModel
eval_config: a eval_pb2.EvalConfig
input_config: a input_reader_pb2.InputReader
"""
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
with tf.gfile.GFile(FLAGS.pipeline_config_path, 'r') as f:
text_format.Merge(f.read(), pipeline_config)
model_config = pipeline_config.model
if FLAGS.eval_training_data:
eval_config = pipeline_config.train_config
else:
eval_config = pipeline_config.eval_config
input_config = pipeline_config.eval_input_reader
return model_config, eval_config, input_config
示例2: build
# 需要導入模塊: from object_detection.protos import model_pb2 [as 別名]
# 或者: from object_detection.protos.model_pb2 import DetectionModel [as 別名]
def build(model_config, is_training):
"""Builds a DetectionModel based on the model config.
Args:
model_config: A model.proto object containing the config for the desired
DetectionModel.
is_training: True if this model is being built for training purposes.
Returns:
DetectionModel based on the config.
Raises:
ValueError: On invalid meta architecture or model.
"""
if not isinstance(model_config, model_pb2.DetectionModel):
raise ValueError('model_config not of type model_pb2.DetectionModel.')
meta_architecture = model_config.WhichOneof('model')
if meta_architecture == 'ssd':
return _build_ssd_model(model_config.ssd, is_training)
if meta_architecture == 'faster_rcnn':
return _build_faster_rcnn_model(model_config.faster_rcnn, is_training)
raise ValueError('Unknown meta architecture: {}'.format(meta_architecture))
示例3: get_image_resizer_config
# 需要導入模塊: from object_detection.protos import model_pb2 [as 別名]
# 或者: from object_detection.protos.model_pb2 import DetectionModel [as 別名]
def get_image_resizer_config(model_config):
"""Returns the image resizer config from a model config.
Args:
model_config: A model_pb2.DetectionModel.
Returns:
An image_resizer_pb2.ImageResizer.
Raises:
ValueError: If the model type is not recognized.
"""
meta_architecture = model_config.WhichOneof("model")
if meta_architecture == "faster_rcnn":
return model_config.faster_rcnn.image_resizer
if meta_architecture == "ssd":
return model_config.ssd.image_resizer
raise ValueError("Unknown model type: {}".format(meta_architecture))
示例4: build
# 需要導入模塊: from object_detection.protos import model_pb2 [as 別名]
# 或者: from object_detection.protos.model_pb2 import DetectionModel [as 別名]
def build(model_config, is_training, add_summaries=True):
"""Builds a DetectionModel based on the model config.
Args:
model_config: A model.proto object containing the config for the desired
DetectionModel.
is_training: True if this model is being built for training purposes.
add_summaries: Whether to add tensorflow summaries in the model graph.
Returns:
DetectionModel based on the config.
Raises:
ValueError: On invalid meta architecture or model.
"""
if not isinstance(model_config, model_pb2.DetectionModel):
raise ValueError('model_config not of type model_pb2.DetectionModel.')
meta_architecture = model_config.WhichOneof('model')
if meta_architecture == 'ssd':
return _build_ssd_model(model_config.ssd, is_training, add_summaries)
if meta_architecture == 'faster_rcnn':
return _build_faster_rcnn_model(model_config.faster_rcnn, is_training,
add_summaries)
raise ValueError('Unknown meta architecture: {}'.format(meta_architecture))
示例5: build
# 需要導入模塊: from object_detection.protos import model_pb2 [as 別名]
# 或者: from object_detection.protos.model_pb2 import DetectionModel [as 別名]
def build(model_config, is_training, add_summaries=True):
"""Builds a DetectionModel based on the model config.
Args:
model_config: A model.proto object containing the config for the desired
DetectionModel.
is_training: True if this model is being built for training purposes.
add_summaries: Whether to add tensorflow summaries in the model graph.
Returns:
DetectionModel based on the config.
Raises:
ValueError: On invalid meta architecture or model.
"""
if not isinstance(model_config, model_pb2.DetectionModel):
raise ValueError('model_config not of type model_pb2.DetectionModel.')
meta_architecture = model_config.WhichOneof('model')
if meta_architecture == 'ssd':
return _build_ssd_model(model_config.ssd, is_training, add_summaries)
if meta_architecture == 'faster_rcnn':
return _build_faster_rcnn_model(model_config.faster_rcnn, is_training,
add_summaries)
raise ValueError('Unknown meta architecture: {}'.format(meta_architecture))
示例6: get_number_of_classes
# 需要導入模塊: from object_detection.protos import model_pb2 [as 別名]
# 或者: from object_detection.protos.model_pb2 import DetectionModel [as 別名]
def get_number_of_classes(model_config):
"""Returns the number of classes for a detection model.
Args:
model_config: A model_pb2.DetectionModel.
Returns:
Number of classes.
Raises:
ValueError: If the model type is not recognized.
"""
meta_architecture = model_config.WhichOneof("model")
if meta_architecture == "faster_rcnn":
return model_config.faster_rcnn.num_classes
if meta_architecture == "ssd":
return model_config.ssd.num_classes
raise ValueError("Expected the model to be one of 'faster_rcnn' or 'ssd'.")
示例7: get_configs_from_multiple_files
# 需要導入模塊: from object_detection.protos import model_pb2 [as 別名]
# 或者: from object_detection.protos.model_pb2 import DetectionModel [as 別名]
def get_configs_from_multiple_files():
"""Reads evaluation configuration from multiple config files.
Reads the evaluation config from the following files:
model_config: Read from --model_config_path
eval_config: Read from --eval_config_path
input_config: Read from --input_config_path
Returns:
model_config: a model_pb2.DetectionModel
eval_config: a eval_pb2.EvalConfig
input_config: a input_reader_pb2.InputReader
"""
eval_config = eval_pb2.EvalConfig()
with tf.gfile.GFile(FLAGS.eval_config_path, 'r') as f:
text_format.Merge(f.read(), eval_config)
model_config = model_pb2.DetectionModel()
with tf.gfile.GFile(FLAGS.model_config_path, 'r') as f:
text_format.Merge(f.read(), model_config)
input_config = input_reader_pb2.InputReader()
with tf.gfile.GFile(FLAGS.input_config_path, 'r') as f:
text_format.Merge(f.read(), input_config)
return model_config, eval_config, input_config
示例8: create_model
# 需要導入模塊: from object_detection.protos import model_pb2 [as 別名]
# 或者: from object_detection.protos.model_pb2 import DetectionModel [as 別名]
def create_model(self, model_config):
"""Builds a DetectionModel based on the model config.
Args:
model_config: A model.proto object containing the config for the desired
DetectionModel.
Returns:
DetectionModel based on the config.
"""
return model_builder.build(model_config, is_training=True)
示例9: get_configs_from_multiple_files
# 需要導入模塊: from object_detection.protos import model_pb2 [as 別名]
# 或者: from object_detection.protos.model_pb2 import DetectionModel [as 別名]
def get_configs_from_multiple_files():
"""Reads training configuration from multiple config files.
Reads the training config from the following files:
model_config: Read from --model_config_path
train_config: Read from --train_config_path
input_config: Read from --input_config_path
Returns:
model_config: model_pb2.DetectionModel
train_config: train_pb2.TrainConfig
input_config: input_reader_pb2.InputReader
"""
train_config = train_pb2.TrainConfig()
with tf.gfile.GFile(FLAGS.train_config_path, 'r') as f:
text_format.Merge(f.read(), train_config)
model_config = model_pb2.DetectionModel()
with tf.gfile.GFile(FLAGS.model_config_path, 'r') as f:
text_format.Merge(f.read(), model_config)
input_config = input_reader_pb2.InputReader()
with tf.gfile.GFile(FLAGS.input_config_path, 'r') as f:
text_format.Merge(f.read(), input_config)
return model_config, train_config, input_config
示例10: testGetImageResizerConfig
# 需要導入模塊: from object_detection.protos import model_pb2 [as 別名]
# 或者: from object_detection.protos.model_pb2 import DetectionModel [as 別名]
def testGetImageResizerConfig(self):
"""Tests that number of classes can be retrieved."""
model_config = model_pb2.DetectionModel()
model_config.faster_rcnn.image_resizer.fixed_shape_resizer.height = 100
model_config.faster_rcnn.image_resizer.fixed_shape_resizer.width = 300
image_resizer_config = config_util.get_image_resizer_config(model_config)
self.assertEqual(image_resizer_config.fixed_shape_resizer.height, 100)
self.assertEqual(image_resizer_config.fixed_shape_resizer.width, 300)