當前位置: 首頁>>代碼示例>>Python>>正文


Python input_reader_pb2.InputReader方法代碼示例

本文整理匯總了Python中object_detection.protos.input_reader_pb2.InputReader方法的典型用法代碼示例。如果您正苦於以下問題:Python input_reader_pb2.InputReader方法的具體用法?Python input_reader_pb2.InputReader怎麽用?Python input_reader_pb2.InputReader使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在object_detection.protos.input_reader_pb2的用法示例。


在下文中一共展示了input_reader_pb2.InputReader方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_configs_from_pipeline_file

# 需要導入模塊: from object_detection.protos import input_reader_pb2 [as 別名]
# 或者: from object_detection.protos.input_reader_pb2 import InputReader [as 別名]
def get_configs_from_pipeline_file():
  """Reads evaluation configuration from a pipeline_pb2.TrainEvalPipelineConfig.

  Reads evaluation config from file specified by pipeline_config_path flag.

  Returns:
    model_config: a model_pb2.DetectionModel
    eval_config: a eval_pb2.EvalConfig
    input_config: a input_reader_pb2.InputReader
  """
  pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
  with tf.gfile.GFile(FLAGS.pipeline_config_path, 'r') as f:
    text_format.Merge(f.read(), pipeline_config)

  model_config = pipeline_config.model
  if FLAGS.eval_training_data:
    eval_config = pipeline_config.train_config
  else:
    eval_config = pipeline_config.eval_config
  input_config = pipeline_config.eval_input_reader

  return model_config, eval_config, input_config 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:24,代碼來源:eval.py

示例2: get_configs_from_pipeline_file

# 需要導入模塊: from object_detection.protos import input_reader_pb2 [as 別名]
# 或者: from object_detection.protos.input_reader_pb2 import InputReader [as 別名]
def get_configs_from_pipeline_file():
  """Reads training configuration from a pipeline_pb2.TrainEvalPipelineConfig.

  Reads training config from file specified by pipeline_config_path flag.

  Returns:
    model_config: model_pb2.DetectionModel
    train_config: train_pb2.TrainConfig
    input_config: input_reader_pb2.InputReader
  """
  pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
  with tf.gfile.GFile(FLAGS.pipeline_config_path, 'r') as f:
    text_format.Merge(f.read(), pipeline_config)

  model_config = pipeline_config.model
  train_config = pipeline_config.train_config
  input_config = pipeline_config.train_input_reader

  return model_config, train_config, input_config 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:21,代碼來源:train.py

示例3: _update_tf_record_input_path

# 需要導入模塊: from object_detection.protos import input_reader_pb2 [as 別名]
# 或者: from object_detection.protos.input_reader_pb2 import InputReader [as 別名]
def _update_tf_record_input_path(input_config, input_path):
  """Updates input configuration to reflect a new input path.

  The input_config object is updated in place, and hence not returned.

  Args:
    input_config: A input_reader_pb2.InputReader.
    input_path: A path to data or list of paths.

  Raises:
    TypeError: if input reader type is not `tf_record_input_reader`.
  """
  input_reader_type = input_config.WhichOneof("input_reader")
  if input_reader_type == "tf_record_input_reader":
    input_config.tf_record_input_reader.ClearField("input_path")
    if isinstance(input_path, list):
      input_config.tf_record_input_reader.input_path.extend(input_path)
    else:
      input_config.tf_record_input_reader.input_path.append(input_path)
  else:
    raise TypeError("Input reader type must be `tf_record_input_reader`.") 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:23,代碼來源:config_util.py

示例4: test_sample_all_data

# 需要導入模塊: from object_detection.protos import input_reader_pb2 [as 別名]
# 或者: from object_detection.protos.input_reader_pb2 import InputReader [as 別名]
def test_sample_all_data(self):
    tf_record_path = self.create_tf_record(num_examples=2)

    input_reader_text_proto = """
      shuffle: false
      num_readers: 1
      sample_1_of_n_examples: 1
      tf_record_input_reader {{
        input_path: '{0}'
      }}
    """.format(tf_record_path)
    input_reader_proto = input_reader_pb2.InputReader()
    text_format.Merge(input_reader_text_proto, input_reader_proto)
    tensor_dict = dataset_builder.make_initializable_iterator(
        dataset_builder.build(input_reader_proto, batch_size=1)).get_next()

    with tf.train.MonitoredSession() as sess:
      output_dict = sess.run(tensor_dict)
      self.assertAllEqual(['0'], output_dict[fields.InputDataFields.source_id])
      output_dict = sess.run(tensor_dict)
      self.assertEquals(['1'], output_dict[fields.InputDataFields.source_id]) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:23,代碼來源:dataset_builder_test.py

示例5: test_sample_one_of_n_shards

# 需要導入模塊: from object_detection.protos import input_reader_pb2 [as 別名]
# 或者: from object_detection.protos.input_reader_pb2 import InputReader [as 別名]
def test_sample_one_of_n_shards(self):
    tf_record_path = self.create_tf_record(num_examples=4)

    input_reader_text_proto = """
      shuffle: false
      num_readers: 1
      sample_1_of_n_examples: 2
      tf_record_input_reader {{
        input_path: '{0}'
      }}
    """.format(tf_record_path)
    input_reader_proto = input_reader_pb2.InputReader()
    text_format.Merge(input_reader_text_proto, input_reader_proto)
    tensor_dict = dataset_builder.make_initializable_iterator(
        dataset_builder.build(input_reader_proto, batch_size=1)).get_next()

    with tf.train.MonitoredSession() as sess:
      output_dict = sess.run(tensor_dict)
      self.assertAllEqual(['0'], output_dict[fields.InputDataFields.source_id])
      output_dict = sess.run(tensor_dict)
      self.assertEquals(['2'], output_dict[fields.InputDataFields.source_id]) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:23,代碼來源:dataset_builder_test.py

示例6: _update_input_path

# 需要導入模塊: from object_detection.protos import input_reader_pb2 [as 別名]
# 或者: from object_detection.protos.input_reader_pb2 import InputReader [as 別名]
def _update_input_path(input_config, input_path):
  """Updates input configuration to reflect a new input path.

  The input_config object is updated in place, and hence not returned.

  Args:
    input_config: A input_reader_pb2.InputReader.
    input_path: A path to data or list of paths.

  Raises:
    TypeError: if input reader type is not `tf_record_input_reader`.
  """
  input_reader_type = input_config.WhichOneof("input_reader")
  if input_reader_type == "tf_record_input_reader":
    input_config.tf_record_input_reader.ClearField("input_path")
    if isinstance(input_path, list):
      input_config.tf_record_input_reader.input_path.extend(input_path)
    else:
      input_config.tf_record_input_reader.input_path.append(input_path)
  else:
    raise TypeError("Input reader type must be `tf_record_input_reader`.") 
開發者ID:cagbal,項目名稱:ros_people_object_detection_tensorflow,代碼行數:23,代碼來源:config_util.py

示例7: test_build_tf_record_input_reader_and_load_instance_masks

# 需要導入模塊: from object_detection.protos import input_reader_pb2 [as 別名]
# 或者: from object_detection.protos.input_reader_pb2 import InputReader [as 別名]
def test_build_tf_record_input_reader_and_load_instance_masks(self):
    tf_record_path = self.create_tf_record()

    input_reader_text_proto = """
      shuffle: false
      num_readers: 1
      load_instance_masks: true
      tf_record_input_reader {{
        input_path: '{0}'
      }}
    """.format(tf_record_path)
    input_reader_proto = input_reader_pb2.InputReader()
    text_format.Merge(input_reader_text_proto, input_reader_proto)
    tensor_dict = dataset_util.make_initializable_iterator(
        dataset_builder.build(input_reader_proto, batch_size=1)).get_next()

    sv = tf.train.Supervisor(logdir=self.get_temp_dir())
    with sv.prepare_or_wait_for_session() as sess:
      sv.start_queue_runners(sess)
      output_dict = sess.run(tensor_dict)
    self.assertAllEqual(
        (1, 1, 4, 5),
        output_dict[fields.InputDataFields.groundtruth_instance_masks].shape) 
開發者ID:cagbal,項目名稱:ros_people_object_detection_tensorflow,代碼行數:25,代碼來源:dataset_builder_test.py

示例8: test_build_tf_record_input_reader_with_additional_channels

# 需要導入模塊: from object_detection.protos import input_reader_pb2 [as 別名]
# 或者: from object_detection.protos.input_reader_pb2 import InputReader [as 別名]
def test_build_tf_record_input_reader_with_additional_channels(self):
    tf_record_path = self.create_tf_record(has_additional_channels=True)

    input_reader_text_proto = """
      shuffle: false
      num_readers: 1
      tf_record_input_reader {{
        input_path: '{0}'
      }}
    """.format(tf_record_path)
    input_reader_proto = input_reader_pb2.InputReader()
    text_format.Merge(input_reader_text_proto, input_reader_proto)
    tensor_dict = dataset_util.make_initializable_iterator(
        dataset_builder.build(
            input_reader_proto, batch_size=2,
            num_additional_channels=2)).get_next()

    sv = tf.train.Supervisor(logdir=self.get_temp_dir())
    with sv.prepare_or_wait_for_session() as sess:
      sv.start_queue_runners(sess)
      output_dict = sess.run(tensor_dict)

    self.assertEquals((2, 4, 5, 5),
                      output_dict[fields.InputDataFields.image].shape) 
開發者ID:ambakick,項目名稱:Person-Detection-and-Tracking,代碼行數:26,代碼來源:dataset_builder_test.py

示例9: get_configs_from_multiple_files

# 需要導入模塊: from object_detection.protos import input_reader_pb2 [as 別名]
# 或者: from object_detection.protos.input_reader_pb2 import InputReader [as 別名]
def get_configs_from_multiple_files():
  """Reads evaluation configuration from multiple config files.

  Reads the evaluation config from the following files:
    model_config: Read from --model_config_path
    eval_config: Read from --eval_config_path
    input_config: Read from --input_config_path

  Returns:
    model_config: a model_pb2.DetectionModel
    eval_config: a eval_pb2.EvalConfig
    input_config: a input_reader_pb2.InputReader
  """
  eval_config = eval_pb2.EvalConfig()
  with tf.gfile.GFile(FLAGS.eval_config_path, 'r') as f:
    text_format.Merge(f.read(), eval_config)

  model_config = model_pb2.DetectionModel()
  with tf.gfile.GFile(FLAGS.model_config_path, 'r') as f:
    text_format.Merge(f.read(), model_config)

  input_config = input_reader_pb2.InputReader()
  with tf.gfile.GFile(FLAGS.input_config_path, 'r') as f:
    text_format.Merge(f.read(), input_config)

  return model_config, eval_config, input_config 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:28,代碼來源:eval.py

示例10: build

# 需要導入模塊: from object_detection.protos import input_reader_pb2 [as 別名]
# 或者: from object_detection.protos.input_reader_pb2 import InputReader [as 別名]
def build(input_reader_config):
  """Builds a tensor dictionary based on the InputReader config.

  Args:
    input_reader_config: A input_reader_pb2.InputReader object.

  Returns:
    A tensor dict based on the input_reader_config.

  Raises:
    ValueError: On invalid input reader proto.
  """
  if not isinstance(input_reader_config, input_reader_pb2.InputReader):
    raise ValueError('input_reader_config not of type '
                     'input_reader_pb2.InputReader.')

  if input_reader_config.WhichOneof('input_reader') == 'tf_record_input_reader':
    config = input_reader_config.tf_record_input_reader
    _, string_tensor = parallel_reader.parallel_read(
        config.input_path,
        reader_class=tf.TFRecordReader,
        num_epochs=(input_reader_config.num_epochs
                    if input_reader_config.num_epochs else None),
        num_readers=input_reader_config.num_readers,
        shuffle=input_reader_config.shuffle,
        dtypes=[tf.string, tf.string],
        capacity=input_reader_config.queue_capacity,
        min_after_dequeue=input_reader_config.min_after_dequeue)

    return tf_example_decoder.TfExampleDecoder().decode(string_tensor)

  raise ValueError('Unsupported input_reader_config.') 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:34,代碼來源:input_reader_builder.py

示例11: test_build_tf_record_input_reader

# 需要導入模塊: from object_detection.protos import input_reader_pb2 [as 別名]
# 或者: from object_detection.protos.input_reader_pb2 import InputReader [as 別名]
def test_build_tf_record_input_reader(self):
    tf_record_path = self.create_tf_record()

    input_reader_text_proto = """
      shuffle: false
      num_readers: 1
      tf_record_input_reader {{
        input_path: '{0}'
      }}
    """.format(tf_record_path)
    input_reader_proto = input_reader_pb2.InputReader()
    text_format.Merge(input_reader_text_proto, input_reader_proto)
    tensor_dict = input_reader_builder.build(input_reader_proto)

    sv = tf.train.Supervisor(logdir=self.get_temp_dir())
    with sv.prepare_or_wait_for_session() as sess:
      sv.start_queue_runners(sess)
      output_dict = sess.run(tensor_dict)

    self.assertEquals(
        (4, 5, 3), output_dict[fields.InputDataFields.image].shape)
    self.assertEquals(
        [2], output_dict[fields.InputDataFields.groundtruth_classes])
    self.assertEquals(
        (1, 4), output_dict[fields.InputDataFields.groundtruth_boxes].shape)
    self.assertAllEqual(
        [0.0, 0.0, 1.0, 1.0],
        output_dict[fields.InputDataFields.groundtruth_boxes][0]) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:30,代碼來源:input_reader_builder_test.py

示例12: build

# 需要導入模塊: from object_detection.protos import input_reader_pb2 [as 別名]
# 或者: from object_detection.protos.input_reader_pb2 import InputReader [as 別名]
def build(input_reader_config):
  """Builds a tensor dictionary based on the InputReader config.

  Args:
    input_reader_config: A input_reader_pb2.InputReader object.

  Returns:
    A tensor dict based on the input_reader_config.

  Raises:
    ValueError: On invalid input reader proto.
  """
  if not isinstance(input_reader_config, input_reader_pb2.InputReader):
    raise ValueError('input_reader_config not of type '
                     'input_reader_pb2.InputReader.')

  if input_reader_config.WhichOneof('input_reader') == 'tf_record_input_reader':
    config = input_reader_config.tf_record_input_reader
    _, string_tensor = parallel_reader.parallel_read(
        config.input_path,
        reader_class=tf.TFRecordReader,
        num_epochs=(input_reader_config.num_epochs
                    if input_reader_config.num_epochs else None),
        num_readers=input_reader_config.num_readers,
        shuffle=input_reader_config.shuffle,
        dtypes=[tf.string, tf.string],
        capacity=input_reader_config.queue_capacity,
        min_after_dequeue=input_reader_config.min_after_dequeue)

    return tf_example_decoder.TfExampleDecoder().Decode(string_tensor)

  raise ValueError('Unsupported input_reader_config.') 
開發者ID:datitran,項目名稱:object_detector_app,代碼行數:34,代碼來源:input_reader_builder.py

示例13: test_build_tf_record_input_reader

# 需要導入模塊: from object_detection.protos import input_reader_pb2 [as 別名]
# 或者: from object_detection.protos.input_reader_pb2 import InputReader [as 別名]
def test_build_tf_record_input_reader(self):
    tf_record_path = self.create_tf_record()

    input_reader_text_proto = """
      shuffle: false
      num_readers: 1
      tf_record_input_reader {{
        input_path: '{0}'
      }}
    """.format(tf_record_path)
    input_reader_proto = input_reader_pb2.InputReader()
    text_format.Merge(input_reader_text_proto, input_reader_proto)
    tensor_dict = input_reader_builder.build(input_reader_proto)

    with tf.train.MonitoredSession() as sess:
      output_dict = sess.run(tensor_dict)

    self.assertTrue(fields.InputDataFields.groundtruth_instance_masks
                    not in output_dict)
    self.assertEquals(
        (4, 5, 3), output_dict[fields.InputDataFields.image].shape)
    self.assertEquals(
        [2], output_dict[fields.InputDataFields.groundtruth_classes])
    self.assertEquals(
        (1, 4), output_dict[fields.InputDataFields.groundtruth_boxes].shape)
    self.assertAllEqual(
        [0.0, 0.0, 1.0, 1.0],
        output_dict[fields.InputDataFields.groundtruth_boxes][0]) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:30,代碼來源:input_reader_builder_test.py

示例14: test_build_tf_record_input_reader_and_load_instance_masks

# 需要導入模塊: from object_detection.protos import input_reader_pb2 [as 別名]
# 或者: from object_detection.protos.input_reader_pb2 import InputReader [as 別名]
def test_build_tf_record_input_reader_and_load_instance_masks(self):
    tf_record_path = self.create_tf_record()

    input_reader_text_proto = """
      shuffle: false
      num_readers: 1
      load_instance_masks: true
      tf_record_input_reader {{
        input_path: '{0}'
      }}
    """.format(tf_record_path)
    input_reader_proto = input_reader_pb2.InputReader()
    text_format.Merge(input_reader_text_proto, input_reader_proto)
    tensor_dict = input_reader_builder.build(input_reader_proto)

    with tf.train.MonitoredSession() as sess:
      output_dict = sess.run(tensor_dict)

    self.assertEquals(
        (4, 5, 3), output_dict[fields.InputDataFields.image].shape)
    self.assertEquals(
        [2], output_dict[fields.InputDataFields.groundtruth_classes])
    self.assertEquals(
        (1, 4), output_dict[fields.InputDataFields.groundtruth_boxes].shape)
    self.assertAllEqual(
        [0.0, 0.0, 1.0, 1.0],
        output_dict[fields.InputDataFields.groundtruth_boxes][0])
    self.assertAllEqual(
        (1, 4, 5),
        output_dict[fields.InputDataFields.groundtruth_instance_masks].shape) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:32,代碼來源:input_reader_builder_test.py

示例15: test_raises_error_with_no_input_paths

# 需要導入模塊: from object_detection.protos import input_reader_pb2 [as 別名]
# 或者: from object_detection.protos.input_reader_pb2 import InputReader [as 別名]
def test_raises_error_with_no_input_paths(self):
    input_reader_text_proto = """
      shuffle: false
      num_readers: 1
      load_instance_masks: true
    """
    input_reader_proto = input_reader_pb2.InputReader()
    text_format.Merge(input_reader_text_proto, input_reader_proto)
    with self.assertRaises(ValueError):
      input_reader_builder.build(input_reader_proto) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:12,代碼來源:input_reader_builder_test.py


注:本文中的object_detection.protos.input_reader_pb2.InputReader方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。