當前位置: 首頁>>代碼示例>>Python>>正文


Python ssd_resnet_v1_fpn_feature_extractor.SSDResnet50V1FpnFeatureExtractor方法代碼示例

本文整理匯總了Python中object_detection.models.ssd_resnet_v1_fpn_feature_extractor.SSDResnet50V1FpnFeatureExtractor方法的典型用法代碼示例。如果您正苦於以下問題:Python ssd_resnet_v1_fpn_feature_extractor.SSDResnet50V1FpnFeatureExtractor方法的具體用法?Python ssd_resnet_v1_fpn_feature_extractor.SSDResnet50V1FpnFeatureExtractor怎麽用?Python ssd_resnet_v1_fpn_feature_extractor.SSDResnet50V1FpnFeatureExtractor使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在object_detection.models.ssd_resnet_v1_fpn_feature_extractor的用法示例。


在下文中一共展示了ssd_resnet_v1_fpn_feature_extractor.SSDResnet50V1FpnFeatureExtractor方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _create_feature_extractor

# 需要導入模塊: from object_detection.models import ssd_resnet_v1_fpn_feature_extractor [as 別名]
# 或者: from object_detection.models.ssd_resnet_v1_fpn_feature_extractor import SSDResnet50V1FpnFeatureExtractor [as 別名]
def _create_feature_extractor(self, depth_multiplier, pad_to_multiple,
                                use_explicit_padding=False, min_depth=32,
                                use_keras=False):
    is_training = True
    if use_keras:
      return (ssd_resnet_v1_fpn_keras_feature_extractor.
              SSDResNet50V1FpnKerasFeatureExtractor(
                  is_training=is_training,
                  depth_multiplier=depth_multiplier,
                  min_depth=min_depth,
                  pad_to_multiple=pad_to_multiple,
                  conv_hyperparams=self._build_conv_hyperparams(
                      add_batch_norm=False),
                  freeze_batchnorm=False,
                  inplace_batchnorm_update=False,
                  name='ResNet50V1_FPN'))
    else:
      return (
          ssd_resnet_v1_fpn_feature_extractor.SSDResnet50V1FpnFeatureExtractor(
              is_training, depth_multiplier, min_depth, pad_to_multiple,
              self.conv_hyperparams_fn,
              use_explicit_padding=use_explicit_padding)) 
開發者ID:ShivangShekhar,項目名稱:Live-feed-object-device-identification-using-Tensorflow-and-OpenCV,代碼行數:24,代碼來源:ssd_resnet_v1_fpn_feature_extractor_test.py

示例2: _create_feature_extractor

# 需要導入模塊: from object_detection.models import ssd_resnet_v1_fpn_feature_extractor [as 別名]
# 或者: from object_detection.models.ssd_resnet_v1_fpn_feature_extractor import SSDResnet50V1FpnFeatureExtractor [as 別名]
def _create_feature_extractor(self, depth_multiplier, pad_to_multiple,
                                use_explicit_padding=False):
    min_depth = 32
    is_training = True
    return ssd_resnet_v1_fpn_feature_extractor.SSDResnet50V1FpnFeatureExtractor(
        is_training, depth_multiplier, min_depth, pad_to_multiple,
        self.conv_hyperparams_fn, use_explicit_padding=use_explicit_padding) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:9,代碼來源:ssd_resnet_v1_fpn_feature_extractor_test.py

示例3: _create_feature_extractor

# 需要導入模塊: from object_detection.models import ssd_resnet_v1_fpn_feature_extractor [as 別名]
# 或者: from object_detection.models.ssd_resnet_v1_fpn_feature_extractor import SSDResnet50V1FpnFeatureExtractor [as 別名]
def _create_feature_extractor(self, depth_multiplier, pad_to_multiple,
                                use_explicit_padding=False):
    min_depth = 32
    conv_hyperparams = {}
    batch_norm_trainable = True
    is_training = True
    return ssd_resnet_v1_fpn_feature_extractor.SSDResnet50V1FpnFeatureExtractor(
        is_training, depth_multiplier, min_depth, pad_to_multiple,
        conv_hyperparams, batch_norm_trainable,
        use_explicit_padding=use_explicit_padding) 
開發者ID:cagbal,項目名稱:ros_people_object_detection_tensorflow,代碼行數:12,代碼來源:ssd_resnet_v1_fpn_feature_extractor_test.py

示例4: _create_feature_extractor

# 需要導入模塊: from object_detection.models import ssd_resnet_v1_fpn_feature_extractor [as 別名]
# 或者: from object_detection.models.ssd_resnet_v1_fpn_feature_extractor import SSDResnet50V1FpnFeatureExtractor [as 別名]
def _create_feature_extractor(self, depth_multiplier, pad_to_multiple):
    min_depth = 32
    conv_hyperparams = {}
    batch_norm_trainable = True
    is_training = True
    return ssd_resnet_v1_fpn_feature_extractor.SSDResnet50V1FpnFeatureExtractor(
        is_training, depth_multiplier, min_depth, pad_to_multiple,
        conv_hyperparams, batch_norm_trainable) 
開發者ID:ShreyAmbesh,項目名稱:Traffic-Rule-Violation-Detection-System,代碼行數:10,代碼來源:ssd_resnet_v1_fpn_feature_extractor_test.py

示例5: _create_feature_extractor

# 需要導入模塊: from object_detection.models import ssd_resnet_v1_fpn_feature_extractor [as 別名]
# 或者: from object_detection.models.ssd_resnet_v1_fpn_feature_extractor import SSDResnet50V1FpnFeatureExtractor [as 別名]
def _create_feature_extractor(self, depth_multiplier, pad_to_multiple,
                                use_explicit_padding=False, min_depth=32,
                                use_keras=False):
    is_training = True
    return (
        ssd_resnet_v1_fpn_feature_extractor.SSDResnet50V1FpnFeatureExtractor(
            is_training, depth_multiplier, min_depth, pad_to_multiple,
            self.conv_hyperparams_fn,
            use_explicit_padding=use_explicit_padding)) 
開發者ID:tensorflow,項目名稱:models,代碼行數:11,代碼來源:ssd_resnet_v1_fpn_feature_extractor_tf1_test.py


注:本文中的object_detection.models.ssd_resnet_v1_fpn_feature_extractor.SSDResnet50V1FpnFeatureExtractor方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。