本文整理匯總了Python中object_detection.models.ssd_resnet_v1_fpn_feature_extractor.SSDResnet101V1FpnFeatureExtractor方法的典型用法代碼示例。如果您正苦於以下問題:Python ssd_resnet_v1_fpn_feature_extractor.SSDResnet101V1FpnFeatureExtractor方法的具體用法?Python ssd_resnet_v1_fpn_feature_extractor.SSDResnet101V1FpnFeatureExtractor怎麽用?Python ssd_resnet_v1_fpn_feature_extractor.SSDResnet101V1FpnFeatureExtractor使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類object_detection.models.ssd_resnet_v1_fpn_feature_extractor
的用法示例。
在下文中一共展示了ssd_resnet_v1_fpn_feature_extractor.SSDResnet101V1FpnFeatureExtractor方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _create_feature_extractor
# 需要導入模塊: from object_detection.models import ssd_resnet_v1_fpn_feature_extractor [as 別名]
# 或者: from object_detection.models.ssd_resnet_v1_fpn_feature_extractor import SSDResnet101V1FpnFeatureExtractor [as 別名]
def _create_feature_extractor(self, depth_multiplier, pad_to_multiple,
use_explicit_padding=False, min_depth=32,
use_keras=False):
is_training = True
if use_keras:
return (ssd_resnet_v1_fpn_keras_feature_extractor.
SSDResNet101V1FpnKerasFeatureExtractor(
is_training=is_training,
depth_multiplier=depth_multiplier,
min_depth=min_depth,
pad_to_multiple=pad_to_multiple,
conv_hyperparams=self._build_conv_hyperparams(
add_batch_norm=False),
freeze_batchnorm=False,
inplace_batchnorm_update=False,
name='ResNet101V1_FPN'))
else:
return (
ssd_resnet_v1_fpn_feature_extractor.SSDResnet101V1FpnFeatureExtractor(
is_training, depth_multiplier, min_depth, pad_to_multiple,
self.conv_hyperparams_fn,
use_explicit_padding=use_explicit_padding))
開發者ID:ShivangShekhar,項目名稱:Live-feed-object-device-identification-using-Tensorflow-and-OpenCV,代碼行數:24,代碼來源:ssd_resnet_v1_fpn_feature_extractor_test.py
示例2: _create_feature_extractor
# 需要導入模塊: from object_detection.models import ssd_resnet_v1_fpn_feature_extractor [as 別名]
# 或者: from object_detection.models.ssd_resnet_v1_fpn_feature_extractor import SSDResnet101V1FpnFeatureExtractor [as 別名]
def _create_feature_extractor(self, depth_multiplier, pad_to_multiple,
use_explicit_padding=False):
min_depth = 32
is_training = True
return (
ssd_resnet_v1_fpn_feature_extractor.SSDResnet101V1FpnFeatureExtractor(
is_training,
depth_multiplier,
min_depth,
pad_to_multiple,
self.conv_hyperparams_fn,
use_explicit_padding=use_explicit_padding))
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:14,代碼來源:ssd_resnet_v1_fpn_feature_extractor_test.py
示例3: _create_feature_extractor
# 需要導入模塊: from object_detection.models import ssd_resnet_v1_fpn_feature_extractor [as 別名]
# 或者: from object_detection.models.ssd_resnet_v1_fpn_feature_extractor import SSDResnet101V1FpnFeatureExtractor [as 別名]
def _create_feature_extractor(self, depth_multiplier, pad_to_multiple,
use_explicit_padding=False):
min_depth = 32
conv_hyperparams = {}
batch_norm_trainable = True
is_training = True
return (
ssd_resnet_v1_fpn_feature_extractor.SSDResnet101V1FpnFeatureExtractor(
is_training, depth_multiplier, min_depth, pad_to_multiple,
conv_hyperparams, batch_norm_trainable,
use_explicit_padding=use_explicit_padding))
開發者ID:cagbal,項目名稱:ros_people_object_detection_tensorflow,代碼行數:13,代碼來源:ssd_resnet_v1_fpn_feature_extractor_test.py
示例4: _create_feature_extractor
# 需要導入模塊: from object_detection.models import ssd_resnet_v1_fpn_feature_extractor [as 別名]
# 或者: from object_detection.models.ssd_resnet_v1_fpn_feature_extractor import SSDResnet101V1FpnFeatureExtractor [as 別名]
def _create_feature_extractor(self, depth_multiplier, pad_to_multiple):
min_depth = 32
conv_hyperparams = {}
batch_norm_trainable = True
is_training = True
return (
ssd_resnet_v1_fpn_feature_extractor.SSDResnet101V1FpnFeatureExtractor(
is_training, depth_multiplier, min_depth, pad_to_multiple,
conv_hyperparams, batch_norm_trainable))
開發者ID:ShreyAmbesh,項目名稱:Traffic-Rule-Violation-Detection-System,代碼行數:11,代碼來源:ssd_resnet_v1_fpn_feature_extractor_test.py
示例5: test_create_ssd_fpn_model_from_config
# 需要導入模塊: from object_detection.models import ssd_resnet_v1_fpn_feature_extractor [as 別名]
# 或者: from object_detection.models.ssd_resnet_v1_fpn_feature_extractor import SSDResnet101V1FpnFeatureExtractor [as 別名]
def test_create_ssd_fpn_model_from_config(self):
model_proto = self.create_default_ssd_model_proto()
model_proto.ssd.feature_extractor.type = 'ssd_resnet101_v1_fpn'
model_proto.ssd.feature_extractor.fpn.min_level = 3
model_proto.ssd.feature_extractor.fpn.max_level = 7
model = model_builder.build(model_proto, is_training=True)
self.assertIsInstance(model._feature_extractor,
ssd_resnet_v1_fpn.SSDResnet101V1FpnFeatureExtractor)
self.assertEqual(model._feature_extractor._fpn_min_level, 3)
self.assertEqual(model._feature_extractor._fpn_max_level, 7)
開發者ID:ShivangShekhar,項目名稱:Live-feed-object-device-identification-using-Tensorflow-and-OpenCV,代碼行數:12,代碼來源:model_builder_test.py
示例6: _create_feature_extractor
# 需要導入模塊: from object_detection.models import ssd_resnet_v1_fpn_feature_extractor [as 別名]
# 或者: from object_detection.models.ssd_resnet_v1_fpn_feature_extractor import SSDResnet101V1FpnFeatureExtractor [as 別名]
def _create_feature_extractor(self, depth_multiplier, pad_to_multiple,
use_explicit_padding=False, min_depth=32,
use_keras=False):
is_training = True
return (
ssd_resnet_v1_fpn_feature_extractor.SSDResnet101V1FpnFeatureExtractor(
is_training, depth_multiplier, min_depth, pad_to_multiple,
self.conv_hyperparams_fn,
use_explicit_padding=use_explicit_padding))