當前位置: 首頁>>代碼示例>>Python>>正文


Python feature_map_generators.pooling_pyramid_feature_maps方法代碼示例

本文整理匯總了Python中object_detection.models.feature_map_generators.pooling_pyramid_feature_maps方法的典型用法代碼示例。如果您正苦於以下問題:Python feature_map_generators.pooling_pyramid_feature_maps方法的具體用法?Python feature_map_generators.pooling_pyramid_feature_maps怎麽用?Python feature_map_generators.pooling_pyramid_feature_maps使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在object_detection.models.feature_map_generators的用法示例。


在下文中一共展示了feature_map_generators.pooling_pyramid_feature_maps方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: extract_features

# 需要導入模塊: from object_detection.models import feature_map_generators [as 別名]
# 或者: from object_detection.models.feature_map_generators import pooling_pyramid_feature_maps [as 別名]
def extract_features(self, preprocessed_inputs):
    """Extract features from preprocessed inputs.

    Args:
      preprocessed_inputs: a [batch, height, width, channels] float tensor
        representing a batch of images.

    Returns:
      feature_maps: a list of tensors where the ith tensor has shape
        [batch, height_i, width_i, depth_i]
    """
    preprocessed_inputs = shape_utils.check_min_image_dim(
        33, preprocessed_inputs)

    with tf.variable_scope('MobilenetV1',
                           reuse=self._reuse_weights) as scope:
      with slim.arg_scope(
          mobilenet_v1.mobilenet_v1_arg_scope(
              is_training=None, regularize_depthwise=True)):
        with (slim.arg_scope(self._conv_hyperparams_fn())
              if self._override_base_feature_extractor_hyperparams
              else context_manager.IdentityContextManager()):
          _, image_features = mobilenet_v1.mobilenet_v1_base(
              ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple),
              final_endpoint='Conv2d_13_pointwise',
              min_depth=self._min_depth,
              depth_multiplier=self._depth_multiplier,
              use_explicit_padding=self._use_explicit_padding,
              scope=scope)
      with slim.arg_scope(self._conv_hyperparams_fn()):
        feature_maps = feature_map_generators.pooling_pyramid_feature_maps(
            base_feature_map_depth=0,
            num_layers=6,
            image_features={
                'image_features': image_features['Conv2d_11_pointwise']
            })
    return feature_maps.values() 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:39,代碼來源:ssd_mobilenet_v1_ppn_feature_extractor.py

示例2: test_get_expected_feature_map_shapes

# 需要導入模塊: from object_detection.models import feature_map_generators [as 別名]
# 或者: from object_detection.models.feature_map_generators import pooling_pyramid_feature_maps [as 別名]
def test_get_expected_feature_map_shapes(self, replace_pool_with_conv):
    image_features = {
        'image_features': tf.random_uniform([4, 19, 19, 1024])
    }
    feature_maps = feature_map_generators.pooling_pyramid_feature_maps(
        base_feature_map_depth=1024,
        num_layers=6,
        image_features=image_features,
        replace_pool_with_conv=replace_pool_with_conv)

    expected_pool_feature_map_shapes = {
        'Base_Conv2d_1x1_1024': (4, 19, 19, 1024),
        'MaxPool2d_0_2x2': (4, 10, 10, 1024),
        'MaxPool2d_1_2x2': (4, 5, 5, 1024),
        'MaxPool2d_2_2x2': (4, 3, 3, 1024),
        'MaxPool2d_3_2x2': (4, 2, 2, 1024),
        'MaxPool2d_4_2x2': (4, 1, 1, 1024),
    }

    expected_conv_feature_map_shapes = {
        'Base_Conv2d_1x1_1024': (4, 19, 19, 1024),
        'Conv2d_0_3x3_s2_1024': (4, 10, 10, 1024),
        'Conv2d_1_3x3_s2_1024': (4, 5, 5, 1024),
        'Conv2d_2_3x3_s2_1024': (4, 3, 3, 1024),
        'Conv2d_3_3x3_s2_1024': (4, 2, 2, 1024),
        'Conv2d_4_3x3_s2_1024': (4, 1, 1, 1024),
    }

    init_op = tf.global_variables_initializer()
    with self.test_session() as sess:
      sess.run(init_op)
      out_feature_maps = sess.run(feature_maps)
      out_feature_map_shapes = {key: value.shape
                                for key, value in out_feature_maps.items()}
      if replace_pool_with_conv:
        self.assertDictEqual(expected_conv_feature_map_shapes,
                             out_feature_map_shapes)
      else:
        self.assertDictEqual(expected_pool_feature_map_shapes,
                             out_feature_map_shapes) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:42,代碼來源:feature_map_generators_test.py

示例3: test_get_expected_variable_names

# 需要導入模塊: from object_detection.models import feature_map_generators [as 別名]
# 或者: from object_detection.models.feature_map_generators import pooling_pyramid_feature_maps [as 別名]
def test_get_expected_variable_names(self, replace_pool_with_conv):
    image_features = {
        'image_features': tf.random_uniform([4, 19, 19, 1024])
    }
    feature_maps = feature_map_generators.pooling_pyramid_feature_maps(
        base_feature_map_depth=1024,
        num_layers=6,
        image_features=image_features,
        replace_pool_with_conv=replace_pool_with_conv)

    expected_pool_variables = set([
        'Base_Conv2d_1x1_1024/weights',
        'Base_Conv2d_1x1_1024/biases',
    ])

    expected_conv_variables = set([
        'Base_Conv2d_1x1_1024/weights',
        'Base_Conv2d_1x1_1024/biases',
        'Conv2d_0_3x3_s2_1024/weights',
        'Conv2d_0_3x3_s2_1024/biases',
        'Conv2d_1_3x3_s2_1024/weights',
        'Conv2d_1_3x3_s2_1024/biases',
        'Conv2d_2_3x3_s2_1024/weights',
        'Conv2d_2_3x3_s2_1024/biases',
        'Conv2d_3_3x3_s2_1024/weights',
        'Conv2d_3_3x3_s2_1024/biases',
        'Conv2d_4_3x3_s2_1024/weights',
        'Conv2d_4_3x3_s2_1024/biases',
    ])

    init_op = tf.global_variables_initializer()
    with self.test_session() as sess:
      sess.run(init_op)
      sess.run(feature_maps)
      actual_variable_set = set(
          [var.op.name for var in tf.trainable_variables()])
      if replace_pool_with_conv:
        self.assertSetEqual(expected_conv_variables, actual_variable_set)
      else:
        self.assertSetEqual(expected_pool_variables, actual_variable_set) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:42,代碼來源:feature_map_generators_test.py

示例4: extract_features

# 需要導入模塊: from object_detection.models import feature_map_generators [as 別名]
# 或者: from object_detection.models.feature_map_generators import pooling_pyramid_feature_maps [as 別名]
def extract_features(self, preprocessed_inputs):
    """Extract features from preprocessed inputs.

    Args:
      preprocessed_inputs: a [batch, height, width, channels] float tensor
        representing a batch of images.

    Returns:
      feature_maps: a list of tensors where the ith tensor has shape
        [batch, height_i, width_i, depth_i]
    """
    preprocessed_inputs = shape_utils.check_min_image_dim(
        33, preprocessed_inputs)

    with tf.variable_scope('MobilenetV1',
                           reuse=self._reuse_weights) as scope:
      with slim.arg_scope(
          mobilenet_v1.mobilenet_v1_arg_scope(
              is_training=None, regularize_depthwise=True)):
        with (slim.arg_scope(self._conv_hyperparams_fn())
              if self._override_base_feature_extractor_hyperparams
              else context_manager.IdentityContextManager()):
          _, image_features = mobilenet_v1.mobilenet_v1_base(
              ops.pad_to_multiple(preprocessed_inputs, self._pad_to_multiple),
              final_endpoint='Conv2d_13_pointwise',
              min_depth=self._min_depth,
              depth_multiplier=self._depth_multiplier,
              use_explicit_padding=self._use_explicit_padding,
              scope=scope)
      with slim.arg_scope(self._conv_hyperparams_fn()):
        feature_maps = feature_map_generators.pooling_pyramid_feature_maps(
            base_feature_map_depth=0,
            num_layers=6,
            image_features={
                'image_features': image_features['Conv2d_11_pointwise']
            })
    return list(feature_maps.values()) 
開發者ID:tensorflow,項目名稱:models,代碼行數:39,代碼來源:ssd_mobilenet_v1_ppn_feature_extractor.py

示例5: extract_features

# 需要導入模塊: from object_detection.models import feature_map_generators [as 別名]
# 或者: from object_detection.models.feature_map_generators import pooling_pyramid_feature_maps [as 別名]
def extract_features(self, preprocessed_inputs):
    """Extract features from preprocessed inputs.

    Args:
      preprocessed_inputs: a [batch, height, width, channels] float tensor
        representing a batch of images.

    Returns:
      feature_maps: a list of tensors where the ith tensor has shape
        [batch, height_i, width_i, depth_i]

    Raises:
      ValueError: depth multiplier is not supported.
    """
    if self._depth_multiplier != 1.0:
      raise ValueError('Depth multiplier not supported.')

    preprocessed_inputs = shape_utils.check_min_image_dim(
        129, preprocessed_inputs)

    with tf.variable_scope(
        self._resnet_scope_name, reuse=self._reuse_weights) as scope:
      with slim.arg_scope(resnet_v1.resnet_arg_scope()):
        with (slim.arg_scope(self._conv_hyperparams_fn())
              if self._override_base_feature_extractor_hyperparams else
              context_manager.IdentityContextManager()):
          with slim.arg_scope(
              [resnet_v1.bottleneck],
              use_bounded_activations=self._use_bounded_activations):
            _, activations = self._resnet_base_fn(
                inputs=ops.pad_to_multiple(preprocessed_inputs,
                                           self._pad_to_multiple),
                num_classes=None,
                is_training=None,
                global_pool=False,
                output_stride=None,
                store_non_strided_activations=True,
                scope=scope)

      with slim.arg_scope(self._conv_hyperparams_fn()):
        feature_maps = feature_map_generators.pooling_pyramid_feature_maps(
            base_feature_map_depth=self._base_feature_map_depth,
            num_layers=self._num_layers,
            image_features={
                'image_features': self._filter_features(activations)['block3']
            })
    return feature_maps.values() 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:49,代碼來源:ssd_resnet_v1_ppn_feature_extractor.py

示例6: extract_features

# 需要導入模塊: from object_detection.models import feature_map_generators [as 別名]
# 或者: from object_detection.models.feature_map_generators import pooling_pyramid_feature_maps [as 別名]
def extract_features(self, preprocessed_inputs):
    """Extract features from preprocessed inputs.

    Args:
      preprocessed_inputs: a [batch, height, width, channels] float tensor
        representing a batch of images.

    Returns:
      feature_maps: a list of tensors where the ith tensor has shape
        [batch, height_i, width_i, depth_i]

    Raises:
      ValueError: depth multiplier is not supported.
    """
    if self._depth_multiplier != 1.0:
      raise ValueError('Depth multiplier not supported.')

    preprocessed_inputs = shape_utils.check_min_image_dim(
        129, preprocessed_inputs)

    with tf.variable_scope(
        self._resnet_scope_name, reuse=self._reuse_weights) as scope:
      with slim.arg_scope(resnet_v1.resnet_arg_scope()):
        with (slim.arg_scope(self._conv_hyperparams_fn())
              if self._override_base_feature_extractor_hyperparams else
              context_manager.IdentityContextManager()):
          with slim.arg_scope(
              [resnet_v1.bottleneck],
              use_bounded_activations=self._use_bounded_activations):
            _, activations = self._resnet_base_fn(
                inputs=ops.pad_to_multiple(preprocessed_inputs,
                                           self._pad_to_multiple),
                num_classes=None,
                is_training=None,
                global_pool=False,
                output_stride=None,
                store_non_strided_activations=True,
                scope=scope)

      with slim.arg_scope(self._conv_hyperparams_fn()):
        feature_maps = feature_map_generators.pooling_pyramid_feature_maps(
            base_feature_map_depth=self._base_feature_map_depth,
            num_layers=self._num_layers,
            image_features={
                'image_features': self._filter_features(activations)['block3']
            })
    return list(feature_maps.values()) 
開發者ID:tensorflow,項目名稱:models,代碼行數:49,代碼來源:ssd_resnet_v1_ppn_feature_extractor.py


注:本文中的object_detection.models.feature_map_generators.pooling_pyramid_feature_maps方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。