當前位置: 首頁>>代碼示例>>Python>>正文


Python model_lib.unstack_batch方法代碼示例

本文整理匯總了Python中object_detection.model_lib.unstack_batch方法的典型用法代碼示例。如果您正苦於以下問題:Python model_lib.unstack_batch方法的具體用法?Python model_lib.unstack_batch怎麽用?Python model_lib.unstack_batch使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在object_detection.model_lib的用法示例。


在下文中一共展示了model_lib.unstack_batch方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_unbatch_without_unpadding

# 需要導入模塊: from object_detection import model_lib [as 別名]
# 或者: from object_detection.model_lib import unstack_batch [as 別名]
def test_unbatch_without_unpadding(self):
    image_placeholder = tf.placeholder(tf.float32, [2, None, None, None])
    groundtruth_boxes_placeholder = tf.placeholder(tf.float32, [2, None, None])
    groundtruth_classes_placeholder = tf.placeholder(tf.float32,
                                                     [2, None, None])
    groundtruth_weights_placeholder = tf.placeholder(tf.float32, [2, None])

    tensor_dict = {
        fields.InputDataFields.image:
            image_placeholder,
        fields.InputDataFields.groundtruth_boxes:
            groundtruth_boxes_placeholder,
        fields.InputDataFields.groundtruth_classes:
            groundtruth_classes_placeholder,
        fields.InputDataFields.groundtruth_weights:
            groundtruth_weights_placeholder
    }
    unbatched_tensor_dict = model_lib.unstack_batch(
        tensor_dict, unpad_groundtruth_tensors=False)

    with self.test_session() as sess:
      unbatched_tensor_dict_out = sess.run(
          unbatched_tensor_dict,
          feed_dict={
              image_placeholder:
                  np.random.rand(2, 4, 4, 3).astype(np.float32),
              groundtruth_boxes_placeholder:
                  np.random.rand(2, 5, 4).astype(np.float32),
              groundtruth_classes_placeholder:
                  np.random.rand(2, 5, 6).astype(np.float32),
              groundtruth_weights_placeholder:
                  np.random.rand(2, 5).astype(np.float32)
          })
    for image_out in unbatched_tensor_dict_out[fields.InputDataFields.image]:
      self.assertAllEqual(image_out.shape, [4, 4, 3])
    for groundtruth_boxes_out in unbatched_tensor_dict_out[
        fields.InputDataFields.groundtruth_boxes]:
      self.assertAllEqual(groundtruth_boxes_out.shape, [5, 4])
    for groundtruth_classes_out in unbatched_tensor_dict_out[
        fields.InputDataFields.groundtruth_classes]:
      self.assertAllEqual(groundtruth_classes_out.shape, [5, 6])
    for groundtruth_weights_out in unbatched_tensor_dict_out[
        fields.InputDataFields.groundtruth_weights]:
      self.assertAllEqual(groundtruth_weights_out.shape, [5]) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:46,代碼來源:model_lib_test.py

示例2: test_unbatch_and_unpad_groundtruth_tensors

# 需要導入模塊: from object_detection import model_lib [as 別名]
# 或者: from object_detection.model_lib import unstack_batch [as 別名]
def test_unbatch_and_unpad_groundtruth_tensors(self):
    image_placeholder = tf.placeholder(tf.float32, [2, None, None, None])
    groundtruth_boxes_placeholder = tf.placeholder(tf.float32, [2, 5, None])
    groundtruth_classes_placeholder = tf.placeholder(tf.float32, [2, 5, None])
    groundtruth_weights_placeholder = tf.placeholder(tf.float32, [2, 5])
    num_groundtruth_placeholder = tf.placeholder(tf.int32, [2])

    tensor_dict = {
        fields.InputDataFields.image:
            image_placeholder,
        fields.InputDataFields.groundtruth_boxes:
            groundtruth_boxes_placeholder,
        fields.InputDataFields.groundtruth_classes:
            groundtruth_classes_placeholder,
        fields.InputDataFields.groundtruth_weights:
            groundtruth_weights_placeholder,
        fields.InputDataFields.num_groundtruth_boxes:
            num_groundtruth_placeholder
    }
    unbatched_tensor_dict = model_lib.unstack_batch(
        tensor_dict, unpad_groundtruth_tensors=True)
    with self.test_session() as sess:
      unbatched_tensor_dict_out = sess.run(
          unbatched_tensor_dict,
          feed_dict={
              image_placeholder:
                  np.random.rand(2, 4, 4, 3).astype(np.float32),
              groundtruth_boxes_placeholder:
                  np.random.rand(2, 5, 4).astype(np.float32),
              groundtruth_classes_placeholder:
                  np.random.rand(2, 5, 6).astype(np.float32),
              groundtruth_weights_placeholder:
                  np.random.rand(2, 5).astype(np.float32),
              num_groundtruth_placeholder:
                  np.array([3, 3], np.int32)
          })
    for image_out in unbatched_tensor_dict_out[fields.InputDataFields.image]:
      self.assertAllEqual(image_out.shape, [4, 4, 3])
    for groundtruth_boxes_out in unbatched_tensor_dict_out[
        fields.InputDataFields.groundtruth_boxes]:
      self.assertAllEqual(groundtruth_boxes_out.shape, [3, 4])
    for groundtruth_classes_out in unbatched_tensor_dict_out[
        fields.InputDataFields.groundtruth_classes]:
      self.assertAllEqual(groundtruth_classes_out.shape, [3, 6])
    for groundtruth_weights_out in unbatched_tensor_dict_out[
        fields.InputDataFields.groundtruth_weights]:
      self.assertAllEqual(groundtruth_weights_out.shape, [3]) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:49,代碼來源:model_lib_test.py


注:本文中的object_detection.model_lib.unstack_batch方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。