本文整理匯總了Python中object_detection.metrics.coco_evaluation.CocoMaskEvaluator方法的典型用法代碼示例。如果您正苦於以下問題:Python coco_evaluation.CocoMaskEvaluator方法的具體用法?Python coco_evaluation.CocoMaskEvaluator怎麽用?Python coco_evaluation.CocoMaskEvaluator使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類object_detection.metrics.coco_evaluation
的用法示例。
在下文中一共展示了coco_evaluation.CocoMaskEvaluator方法的1個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: testAddEvalDict
# 需要導入模塊: from object_detection.metrics import coco_evaluation [as 別名]
# 或者: from object_detection.metrics.coco_evaluation import CocoMaskEvaluator [as 別名]
def testAddEvalDict(self):
coco_evaluator = coco_evaluation.CocoMaskEvaluator(_get_categories_list())
image_id = tf.placeholder(tf.string, shape=())
groundtruth_boxes = tf.placeholder(tf.float32, shape=(None, 4))
groundtruth_classes = tf.placeholder(tf.float32, shape=(None))
groundtruth_masks = tf.placeholder(tf.uint8, shape=(None, None, None))
detection_scores = tf.placeholder(tf.float32, shape=(None))
detection_classes = tf.placeholder(tf.float32, shape=(None))
detection_masks = tf.placeholder(tf.uint8, shape=(None, None, None))
input_data_fields = standard_fields.InputDataFields
detection_fields = standard_fields.DetectionResultFields
eval_dict = {
input_data_fields.key: image_id,
input_data_fields.groundtruth_boxes: groundtruth_boxes,
input_data_fields.groundtruth_classes: groundtruth_classes,
input_data_fields.groundtruth_instance_masks: groundtruth_masks,
detection_fields.detection_scores: detection_scores,
detection_fields.detection_classes: detection_classes,
detection_fields.detection_masks: detection_masks,
}
update_op = coco_evaluator.add_eval_dict(eval_dict)
with self.test_session() as sess:
sess.run(
update_op,
feed_dict={
image_id:
'image1',
groundtruth_boxes:
np.array([[100., 100., 200., 200.], [50., 50., 100., 100.]]),
groundtruth_classes:
np.array([1, 2]),
groundtruth_masks:
np.stack([
np.pad(
np.ones([100, 100], dtype=np.uint8), ((10, 10),
(10, 10)),
mode='constant'),
np.pad(
np.ones([50, 50], dtype=np.uint8), ((0, 70), (0, 70)),
mode='constant')
]),
detection_scores:
np.array([.9, .8]),
detection_classes:
np.array([2, 1]),
detection_masks:
np.stack([
np.pad(
np.ones([50, 50], dtype=np.uint8), ((0, 70), (0, 70)),
mode='constant'),
np.pad(
np.ones([100, 100], dtype=np.uint8), ((10, 10),
(10, 10)),
mode='constant'),
])
})
self.assertLen(coco_evaluator._groundtruth_list, 2)
self.assertLen(coco_evaluator._detection_masks_list, 2)