本文整理匯總了Python中object_detection.meta_architectures.ssd_meta_arch.SSDMetaArch方法的典型用法代碼示例。如果您正苦於以下問題:Python ssd_meta_arch.SSDMetaArch方法的具體用法?Python ssd_meta_arch.SSDMetaArch怎麽用?Python ssd_meta_arch.SSDMetaArch使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類object_detection.meta_architectures.ssd_meta_arch
的用法示例。
在下文中一共展示了ssd_meta_arch.SSDMetaArch方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _create_model
# 需要導入模塊: from object_detection.meta_architectures import ssd_meta_arch [as 別名]
# 或者: from object_detection.meta_architectures.ssd_meta_arch import SSDMetaArch [as 別名]
def _create_model(self,
apply_hard_mining=True,
normalize_loc_loss_by_codesize=False,
add_background_class=True,
random_example_sampling=False,
weight_regression_loss_by_score=False,
use_expected_classification_loss_under_sampling=False,
min_num_negative_samples=1,
desired_negative_sampling_ratio=3,
use_keras=False,
predict_mask=False,
use_static_shapes=False,
nms_max_size_per_class=5):
return super(SsdMetaArchTest, self)._create_model(
model_fn=ssd_meta_arch.SSDMetaArch,
apply_hard_mining=apply_hard_mining,
normalize_loc_loss_by_codesize=normalize_loc_loss_by_codesize,
add_background_class=add_background_class,
random_example_sampling=random_example_sampling,
weight_regression_loss_by_score=weight_regression_loss_by_score,
use_expected_classification_loss_under_sampling=
use_expected_classification_loss_under_sampling,
min_num_negative_samples=min_num_negative_samples,
desired_negative_sampling_ratio=desired_negative_sampling_ratio,
use_keras=use_keras,
predict_mask=predict_mask,
use_static_shapes=use_static_shapes,
nms_max_size_per_class=nms_max_size_per_class)
示例2: test_create_ssd_models_from_config
# 需要導入模塊: from object_detection.meta_architectures import ssd_meta_arch [as 別名]
# 或者: from object_detection.meta_architectures.ssd_meta_arch import SSDMetaArch [as 別名]
def test_create_ssd_models_from_config(self):
model_proto = self.create_default_ssd_model_proto()
ssd_feature_extractor_map = {}
ssd_feature_extractor_map.update(
model_builder.SSD_FEATURE_EXTRACTOR_CLASS_MAP)
ssd_feature_extractor_map.update(
model_builder.SSD_KERAS_FEATURE_EXTRACTOR_CLASS_MAP)
for extractor_type, extractor_class in ssd_feature_extractor_map.items():
model_proto.ssd.feature_extractor.type = extractor_type
model = model_builder.build(model_proto, is_training=True)
self.assertIsInstance(model, ssd_meta_arch.SSDMetaArch)
self.assertIsInstance(model._feature_extractor, extractor_class)
開發者ID:ShivangShekhar,項目名稱:Live-feed-object-device-identification-using-Tensorflow-and-OpenCV,代碼行數:15,代碼來源:model_builder_test.py
示例3: _create_model
# 需要導入模塊: from object_detection.meta_architectures import ssd_meta_arch [as 別名]
# 或者: from object_detection.meta_architectures.ssd_meta_arch import SSDMetaArch [as 別名]
def _create_model(
self,
apply_hard_mining=True,
normalize_loc_loss_by_codesize=False,
add_background_class=True,
random_example_sampling=False,
expected_loss_weights=model_pb2.DetectionModel().ssd.loss.NONE,
min_num_negative_samples=1,
desired_negative_sampling_ratio=3,
use_keras=False,
predict_mask=False,
use_static_shapes=False,
nms_max_size_per_class=5):
return super(SsdMetaArchTest, self)._create_model(
model_fn=ssd_meta_arch.SSDMetaArch,
apply_hard_mining=apply_hard_mining,
normalize_loc_loss_by_codesize=normalize_loc_loss_by_codesize,
add_background_class=add_background_class,
random_example_sampling=random_example_sampling,
expected_loss_weights=expected_loss_weights,
min_num_negative_samples=min_num_negative_samples,
desired_negative_sampling_ratio=desired_negative_sampling_ratio,
use_keras=use_keras,
predict_mask=predict_mask,
use_static_shapes=use_static_shapes,
nms_max_size_per_class=nms_max_size_per_class)
示例4: _create_model
# 需要導入模塊: from object_detection.meta_architectures import ssd_meta_arch [as 別名]
# 或者: from object_detection.meta_architectures.ssd_meta_arch import SSDMetaArch [as 別名]
def _create_model(
self,
apply_hard_mining=True,
normalize_loc_loss_by_codesize=False,
add_background_class=True,
random_example_sampling=False,
expected_loss_weights=model_pb2.DetectionModel().ssd.loss.NONE,
min_num_negative_samples=1,
desired_negative_sampling_ratio=3,
predict_mask=False,
use_static_shapes=False,
nms_max_size_per_class=5,
calibration_mapping_value=None,
return_raw_detections_during_predict=False):
return super(SsdMetaArchTest, self)._create_model(
model_fn=ssd_meta_arch.SSDMetaArch,
apply_hard_mining=apply_hard_mining,
normalize_loc_loss_by_codesize=normalize_loc_loss_by_codesize,
add_background_class=add_background_class,
random_example_sampling=random_example_sampling,
expected_loss_weights=expected_loss_weights,
min_num_negative_samples=min_num_negative_samples,
desired_negative_sampling_ratio=desired_negative_sampling_ratio,
predict_mask=predict_mask,
use_static_shapes=use_static_shapes,
nms_max_size_per_class=nms_max_size_per_class,
calibration_mapping_value=calibration_mapping_value,
return_raw_detections_during_predict=(
return_raw_detections_during_predict))
示例5: test_create_ssd_models_from_config
# 需要導入模塊: from object_detection.meta_architectures import ssd_meta_arch [as 別名]
# 或者: from object_detection.meta_architectures.ssd_meta_arch import SSDMetaArch [as 別名]
def test_create_ssd_models_from_config(self):
model_proto = self.create_default_ssd_model_proto()
for extractor_type, extractor_class in self.ssd_feature_extractors().items(
):
model_proto.ssd.feature_extractor.type = extractor_type
model = model_builder.build(model_proto, is_training=True)
self.assertIsInstance(model, ssd_meta_arch.SSDMetaArch)
self.assertIsInstance(model._feature_extractor, extractor_class)
示例6: setUp
# 需要導入模塊: from object_detection.meta_architectures import ssd_meta_arch [as 別名]
# 或者: from object_detection.meta_architectures.ssd_meta_arch import SSDMetaArch [as 別名]
def setUp(self):
"""Set up mock SSD model.
Here we set up a simple mock SSD model that will always predict 4
detections that happen to always be exactly the anchors that are set up
in the above MockAnchorGenerator. Because we let max_detections=5,
we will also always end up with an extra padded row in the detection
results.
"""
is_training = False
self._num_classes = 1
mock_anchor_generator = MockAnchorGenerator2x2()
mock_box_predictor = test_utils.MockBoxPredictor(
is_training, self._num_classes)
mock_box_coder = test_utils.MockBoxCoder()
fake_feature_extractor = FakeSSDFeatureExtractor()
mock_matcher = test_utils.MockMatcher()
region_similarity_calculator = sim_calc.IouSimilarity()
def image_resizer_fn(image):
return tf.identity(image)
classification_loss = losses.WeightedSigmoidClassificationLoss(
anchorwise_output=True)
localization_loss = losses.WeightedSmoothL1LocalizationLoss(
anchorwise_output=True)
non_max_suppression_fn = functools.partial(
post_processing.batch_multiclass_non_max_suppression,
score_thresh=-20.0,
iou_thresh=1.0,
max_size_per_class=5,
max_total_size=5)
classification_loss_weight = 1.0
localization_loss_weight = 1.0
normalize_loss_by_num_matches = False
# This hard example miner is expected to be a no-op.
hard_example_miner = losses.HardExampleMiner(
num_hard_examples=None,
iou_threshold=1.0)
self._num_anchors = 4
self._code_size = 4
self._model = ssd_meta_arch.SSDMetaArch(
is_training, mock_anchor_generator, mock_box_predictor, mock_box_coder,
fake_feature_extractor, mock_matcher, region_similarity_calculator,
image_resizer_fn, non_max_suppression_fn, tf.identity,
classification_loss, localization_loss, classification_loss_weight,
localization_loss_weight, normalize_loss_by_num_matches,
hard_example_miner)
示例7: _build_ssd_model
# 需要導入模塊: from object_detection.meta_architectures import ssd_meta_arch [as 別名]
# 或者: from object_detection.meta_architectures.ssd_meta_arch import SSDMetaArch [as 別名]
def _build_ssd_model(ssd_config, is_training):
"""Builds an SSD detection model based on the model config.
Args:
ssd_config: A ssd.proto object containing the config for the desired
SSDMetaArch.
is_training: True if this model is being built for training purposes.
Returns:
SSDMetaArch based on the config.
Raises:
ValueError: If ssd_config.type is not recognized (i.e. not registered in
model_class_map).
"""
num_classes = ssd_config.num_classes
# Feature extractor
feature_extractor = _build_ssd_feature_extractor(ssd_config.feature_extractor,
is_training)
box_coder = box_coder_builder.build(ssd_config.box_coder)
matcher = matcher_builder.build(ssd_config.matcher)
region_similarity_calculator = sim_calc.build(
ssd_config.similarity_calculator)
ssd_box_predictor = box_predictor_builder.build(hyperparams_builder.build,
ssd_config.box_predictor,
is_training, num_classes)
anchor_generator = anchor_generator_builder.build(
ssd_config.anchor_generator)
image_resizer_fn = image_resizer_builder.build(ssd_config.image_resizer)
non_max_suppression_fn, score_conversion_fn = post_processing_builder.build(
ssd_config.post_processing)
(classification_loss, localization_loss, classification_weight,
localization_weight,
hard_example_miner) = losses_builder.build(ssd_config.loss)
normalize_loss_by_num_matches = ssd_config.normalize_loss_by_num_matches
return ssd_meta_arch.SSDMetaArch(
is_training,
anchor_generator,
ssd_box_predictor,
box_coder,
feature_extractor,
matcher,
region_similarity_calculator,
image_resizer_fn,
non_max_suppression_fn,
score_conversion_fn,
classification_loss,
localization_loss,
classification_weight,
localization_weight,
normalize_loss_by_num_matches,
hard_example_miner)
示例8: _create_model
# 需要導入模塊: from object_detection.meta_architectures import ssd_meta_arch [as 別名]
# 或者: from object_detection.meta_architectures.ssd_meta_arch import SSDMetaArch [as 別名]
def _create_model(self, apply_hard_mining=True,
normalize_loc_loss_by_codesize=False):
is_training = False
num_classes = 1
mock_anchor_generator = MockAnchorGenerator2x2()
mock_box_predictor = test_utils.MockBoxPredictor(
is_training, num_classes)
mock_box_coder = test_utils.MockBoxCoder()
fake_feature_extractor = FakeSSDFeatureExtractor()
mock_matcher = test_utils.MockMatcher()
region_similarity_calculator = sim_calc.IouSimilarity()
encode_background_as_zeros = False
def image_resizer_fn(image):
return [tf.identity(image), tf.shape(image)]
classification_loss = losses.WeightedSigmoidClassificationLoss()
localization_loss = losses.WeightedSmoothL1LocalizationLoss()
non_max_suppression_fn = functools.partial(
post_processing.batch_multiclass_non_max_suppression,
score_thresh=-20.0,
iou_thresh=1.0,
max_size_per_class=5,
max_total_size=5)
classification_loss_weight = 1.0
localization_loss_weight = 1.0
negative_class_weight = 1.0
normalize_loss_by_num_matches = False
hard_example_miner = None
if apply_hard_mining:
# This hard example miner is expected to be a no-op.
hard_example_miner = losses.HardExampleMiner(
num_hard_examples=None,
iou_threshold=1.0)
code_size = 4
model = ssd_meta_arch.SSDMetaArch(
is_training, mock_anchor_generator, mock_box_predictor, mock_box_coder,
fake_feature_extractor, mock_matcher, region_similarity_calculator,
encode_background_as_zeros, negative_class_weight, image_resizer_fn,
non_max_suppression_fn, tf.identity, classification_loss,
localization_loss, classification_loss_weight, localization_loss_weight,
normalize_loss_by_num_matches, hard_example_miner, add_summaries=False,
normalize_loc_loss_by_codesize=normalize_loc_loss_by_codesize)
return model, num_classes, mock_anchor_generator.num_anchors(), code_size
示例9: _build_ssd_model
# 需要導入模塊: from object_detection.meta_architectures import ssd_meta_arch [as 別名]
# 或者: from object_detection.meta_architectures.ssd_meta_arch import SSDMetaArch [as 別名]
def _build_ssd_model(ssd_config, is_training):
"""Builds an SSD detection model based on the model config.
Args:
ssd_config: A ssd.proto object containing the config for the desired
SSDMetaArch.
is_training: True if this model is being built for training purposes.
Returns:
SSDMetaArch based on the config.
Raises:
ValueError: If ssd_config.type is not recognized (i.e. not registered in
model_class_map).
"""
num_classes = ssd_config.num_classes
# Feature extractor
feature_extractor = _build_ssd_feature_extractor(ssd_config.feature_extractor,
is_training)
box_coder = box_coder_builder.build(ssd_config.box_coder)
matcher = matcher_builder.build(ssd_config.matcher)
region_similarity_calculator = sim_calc.build(
ssd_config.similarity_calculator)
ssd_box_predictor = box_predictor_builder.build(hyperparams_builder.build,
ssd_config.box_predictor,
is_training, num_classes)
anchor_generator = anchor_generator_builder.build(
ssd_config.anchor_generator)
image_resizer_fn = image_resizer_builder.build(ssd_config.image_resizer)
non_max_suppression_fn, score_conversion_fn = post_processing_builder.build(
ssd_config.post_processing)
(classification_loss, localization_loss, classification_weight,
localization_weight,
hard_example_miner) = losses_builder.build(ssd_config.loss)
normalize_loss_by_num_matches = ssd_config.normalize_loss_by_num_matches
common_kwargs = {
'is_training':is_training,
'anchor_generator':anchor_generator,
'box_predictor':ssd_box_predictor,
'box_coder':box_coder,
'feature_extractor':feature_extractor,
'matcher':matcher,
'region_similarity_calculator':region_similarity_calculator,
'image_resizer_fn':image_resizer_fn,
'non_max_suppression_fn':non_max_suppression_fn,
'score_conversion_fn':score_conversion_fn,
'classification_loss':classification_loss,
'localization_loss':localization_loss,
'classification_loss_weight':classification_weight,
'localization_loss_weight':localization_weight,
'normalize_loss_by_num_matches':normalize_loss_by_num_matches,
'hard_example_miner':hard_example_miner}
if isinstance(anchor_generator, yolo_grid_anchor_generator.YoloGridAnchorGenerator):
return yolo_meta_arch.YOLOMetaArch(**common_kwargs)
else:
return ssd_meta_arch.SSDMetaArch(**common_kwargs)
示例10: _create_model
# 需要導入模塊: from object_detection.meta_architectures import ssd_meta_arch [as 別名]
# 或者: from object_detection.meta_architectures.ssd_meta_arch import SSDMetaArch [as 別名]
def _create_model(self, apply_hard_mining=True):
is_training = False
num_classes = 1
mock_anchor_generator = MockAnchorGenerator2x2()
mock_box_predictor = test_utils.MockBoxPredictor(
is_training, num_classes)
mock_box_coder = test_utils.MockBoxCoder()
fake_feature_extractor = FakeSSDFeatureExtractor()
mock_matcher = test_utils.MockMatcher()
region_similarity_calculator = sim_calc.IouSimilarity()
def image_resizer_fn(image):
return [tf.identity(image), tf.shape(image)]
classification_loss = losses.WeightedSigmoidClassificationLoss()
localization_loss = losses.WeightedSmoothL1LocalizationLoss()
non_max_suppression_fn = functools.partial(
post_processing.batch_multiclass_non_max_suppression,
score_thresh=-20.0,
iou_thresh=1.0,
max_size_per_class=5,
max_total_size=5)
classification_loss_weight = 1.0
localization_loss_weight = 1.0
normalize_loss_by_num_matches = False
hard_example_miner = None
if apply_hard_mining:
# This hard example miner is expected to be a no-op.
hard_example_miner = losses.HardExampleMiner(
num_hard_examples=None,
iou_threshold=1.0)
code_size = 4
model = ssd_meta_arch.SSDMetaArch(
is_training, mock_anchor_generator, mock_box_predictor, mock_box_coder,
fake_feature_extractor, mock_matcher, region_similarity_calculator,
image_resizer_fn, non_max_suppression_fn, tf.identity,
classification_loss, localization_loss, classification_loss_weight,
localization_loss_weight, normalize_loss_by_num_matches,
hard_example_miner, add_summaries=False)
return model, num_classes, mock_anchor_generator.num_anchors(), code_size
示例11: _build_ssd_model
# 需要導入模塊: from object_detection.meta_architectures import ssd_meta_arch [as 別名]
# 或者: from object_detection.meta_architectures.ssd_meta_arch import SSDMetaArch [as 別名]
def _build_ssd_model(ssd_config, is_training, add_summaries):
"""Builds an SSD detection model based on the model config.
Args:
ssd_config: A ssd.proto object containing the config for the desired
SSDMetaArch.
is_training: True if this model is being built for training purposes.
add_summaries: Whether to add tf summaries in the model.
Returns:
SSDMetaArch based on the config.
Raises:
ValueError: If ssd_config.type is not recognized (i.e. not registered in
model_class_map).
"""
num_classes = ssd_config.num_classes
# Feature extractor
feature_extractor = _build_ssd_feature_extractor(ssd_config.feature_extractor,
is_training)
box_coder = box_coder_builder.build(ssd_config.box_coder)
matcher = matcher_builder.build(ssd_config.matcher)
region_similarity_calculator = sim_calc.build(
ssd_config.similarity_calculator)
ssd_box_predictor = box_predictor_builder.build(hyperparams_builder.build,
ssd_config.box_predictor,
is_training, num_classes)
anchor_generator = anchor_generator_builder.build(
ssd_config.anchor_generator)
image_resizer_fn = image_resizer_builder.build(ssd_config.image_resizer)
non_max_suppression_fn, score_conversion_fn = post_processing_builder.build(
ssd_config.post_processing)
(classification_loss, localization_loss, classification_weight,
localization_weight,
hard_example_miner) = losses_builder.build(ssd_config.loss)
normalize_loss_by_num_matches = ssd_config.normalize_loss_by_num_matches
return ssd_meta_arch.SSDMetaArch(
is_training,
anchor_generator,
ssd_box_predictor,
box_coder,
feature_extractor,
matcher,
region_similarity_calculator,
image_resizer_fn,
non_max_suppression_fn,
score_conversion_fn,
classification_loss,
localization_loss,
classification_weight,
localization_weight,
normalize_loss_by_num_matches,
hard_example_miner,
add_summaries=add_summaries)