當前位置: 首頁>>代碼示例>>Python>>正文


Python faster_rcnn_meta_arch.FasterRCNNFeatureExtractor方法代碼示例

本文整理匯總了Python中object_detection.meta_architectures.faster_rcnn_meta_arch.FasterRCNNFeatureExtractor方法的典型用法代碼示例。如果您正苦於以下問題:Python faster_rcnn_meta_arch.FasterRCNNFeatureExtractor方法的具體用法?Python faster_rcnn_meta_arch.FasterRCNNFeatureExtractor怎麽用?Python faster_rcnn_meta_arch.FasterRCNNFeatureExtractor使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在object_detection.meta_architectures.faster_rcnn_meta_arch的用法示例。


在下文中一共展示了faster_rcnn_meta_arch.FasterRCNNFeatureExtractor方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _build_faster_rcnn_feature_extractor

# 需要導入模塊: from object_detection.meta_architectures import faster_rcnn_meta_arch [as 別名]
# 或者: from object_detection.meta_architectures.faster_rcnn_meta_arch import FasterRCNNFeatureExtractor [as 別名]
def _build_faster_rcnn_feature_extractor(
    feature_extractor_config, is_training, reuse_weights=None):
  """Builds a faster_rcnn_meta_arch.FasterRCNNFeatureExtractor based on config.

  Args:
    feature_extractor_config: A FasterRcnnFeatureExtractor proto config from
      faster_rcnn.proto.
    is_training: True if this feature extractor is being built for training.
    reuse_weights: if the feature extractor should reuse weights.

  Returns:
    faster_rcnn_meta_arch.FasterRCNNFeatureExtractor based on config.

  Raises:
    ValueError: On invalid feature extractor type.
  """
  feature_type = feature_extractor_config.type
  first_stage_features_stride = (
      feature_extractor_config.first_stage_features_stride)

  if feature_type not in FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP:
    raise ValueError('Unknown Faster R-CNN feature_extractor: {}'.format(
        feature_type))
  feature_extractor_class = FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP[
      feature_type]
  return feature_extractor_class(
      is_training, first_stage_features_stride, reuse_weights) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:29,代碼來源:model_builder.py

示例2: restore_from_classification_checkpoint_fn

# 需要導入模塊: from object_detection.meta_architectures import faster_rcnn_meta_arch [as 別名]
# 或者: from object_detection.meta_architectures.faster_rcnn_meta_arch import FasterRCNNFeatureExtractor [as 別名]
def restore_from_classification_checkpoint_fn(
      self,
      first_stage_feature_extractor_scope,
      second_stage_feature_extractor_scope):
    """Returns a map of variables to load from a foreign checkpoint.

    Note that this overrides the default implementation in
    faster_rcnn_meta_arch.FasterRCNNFeatureExtractor which does not work for
    NASNet-A checkpoints.

    Args:
      first_stage_feature_extractor_scope: A scope name for the first stage
        feature extractor.
      second_stage_feature_extractor_scope: A scope name for the second stage
        feature extractor.

    Returns:
      A dict mapping variable names (to load from a checkpoint) to variables in
      the model graph.
    """
    # Note that the NAS checkpoint only contains the moving average version of
    # the Variables so we need to generate an appropriate dictionary mapping.
    variables_to_restore = {}
    for variable in tf.global_variables():
      if variable.op.name.startswith(
          first_stage_feature_extractor_scope):
        var_name = variable.op.name.replace(
            first_stage_feature_extractor_scope + '/', '')
        var_name += '/ExponentialMovingAverage'
        variables_to_restore[var_name] = variable
      if variable.op.name.startswith(
          second_stage_feature_extractor_scope):
        var_name = variable.op.name.replace(
            second_stage_feature_extractor_scope + '/', '')
        var_name += '/ExponentialMovingAverage'
        variables_to_restore[var_name] = variable
    return variables_to_restore 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:39,代碼來源:faster_rcnn_nas_feature_extractor.py

示例3: restore_from_classification_checkpoint_fn

# 需要導入模塊: from object_detection.meta_architectures import faster_rcnn_meta_arch [as 別名]
# 或者: from object_detection.meta_architectures.faster_rcnn_meta_arch import FasterRCNNFeatureExtractor [as 別名]
def restore_from_classification_checkpoint_fn(
      self,
      first_stage_feature_extractor_scope,
      second_stage_feature_extractor_scope):
    """Returns a map of variables to load from a foreign checkpoint.

    Note that this overrides the default implementation in
    faster_rcnn_meta_arch.FasterRCNNFeatureExtractor which does not work for
    PNASNet checkpoints.

    Args:
      first_stage_feature_extractor_scope: A scope name for the first stage
        feature extractor.
      second_stage_feature_extractor_scope: A scope name for the second stage
        feature extractor.

    Returns:
      A dict mapping variable names (to load from a checkpoint) to variables in
      the model graph.
    """
    variables_to_restore = {}
    for variable in tf.global_variables():
      if variable.op.name.startswith(
          first_stage_feature_extractor_scope):
        var_name = variable.op.name.replace(
            first_stage_feature_extractor_scope + '/', '')
        var_name += '/ExponentialMovingAverage'
        variables_to_restore[var_name] = variable
      if variable.op.name.startswith(
          second_stage_feature_extractor_scope):
        var_name = variable.op.name.replace(
            second_stage_feature_extractor_scope + '/', '')
        var_name += '/ExponentialMovingAverage'
        variables_to_restore[var_name] = variable
    return variables_to_restore 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:37,代碼來源:faster_rcnn_pnas_feature_extractor.py

示例4: _build_faster_rcnn_feature_extractor

# 需要導入模塊: from object_detection.meta_architectures import faster_rcnn_meta_arch [as 別名]
# 或者: from object_detection.meta_architectures.faster_rcnn_meta_arch import FasterRCNNFeatureExtractor [as 別名]
def _build_faster_rcnn_feature_extractor(
    feature_extractor_config, is_training, reuse_weights=None,
    inplace_batchnorm_update=False):
  """Builds a faster_rcnn_meta_arch.FasterRCNNFeatureExtractor based on config.

  Args:
    feature_extractor_config: A FasterRcnnFeatureExtractor proto config from
      faster_rcnn.proto.
    is_training: True if this feature extractor is being built for training.
    reuse_weights: if the feature extractor should reuse weights.
    inplace_batchnorm_update: Whether to update batch_norm inplace during
      training. This is required for batch norm to work correctly on TPUs. When
      this is false, user must add a control dependency on
      tf.GraphKeys.UPDATE_OPS for train/loss op in order to update the batch
      norm moving average parameters.

  Returns:
    faster_rcnn_meta_arch.FasterRCNNFeatureExtractor based on config.

  Raises:
    ValueError: On invalid feature extractor type.
  """
  if inplace_batchnorm_update:
    raise ValueError('inplace batchnorm updates not supported.')
  feature_type = feature_extractor_config.type
  first_stage_features_stride = (
      feature_extractor_config.first_stage_features_stride)
  batch_norm_trainable = feature_extractor_config.batch_norm_trainable

  if feature_type not in FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP:
    raise ValueError('Unknown Faster R-CNN feature_extractor: {}'.format(
        feature_type))
  feature_extractor_class = FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP[
      feature_type]
  return feature_extractor_class(
      is_training, first_stage_features_stride,
      batch_norm_trainable, reuse_weights) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:39,代碼來源:model_builder.py

示例5: _build_faster_rcnn_feature_extractor

# 需要導入模塊: from object_detection.meta_architectures import faster_rcnn_meta_arch [as 別名]
# 或者: from object_detection.meta_architectures.faster_rcnn_meta_arch import FasterRCNNFeatureExtractor [as 別名]
def _build_faster_rcnn_feature_extractor(
    feature_extractor_config, is_training, reuse_weights=None):
  """Builds a faster_rcnn_meta_arch.FasterRCNNFeatureExtractor based on config.

  Args:
    feature_extractor_config: A FasterRcnnFeatureExtractor proto config from
      faster_rcnn.proto.
    is_training: True if this feature extractor is being built for training.
    reuse_weights: if the feature extractor should reuse weights.

  Returns:
    faster_rcnn_meta_arch.FasterRCNNFeatureExtractor based on config.

  Raises:
    ValueError: On invalid feature extractor type.
  """
  feature_type = feature_extractor_config.type
  first_stage_features_stride = (
      feature_extractor_config.first_stage_features_stride)
  batch_norm_trainable = feature_extractor_config.batch_norm_trainable

  if feature_type not in FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP:
    raise ValueError('Unknown Faster R-CNN feature_extractor: {}'.format(
        feature_type))
  feature_extractor_class = FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP[
      feature_type]
  return feature_extractor_class(
      is_training, first_stage_features_stride,
      batch_norm_trainable, reuse_weights) 
開發者ID:cagbal,項目名稱:ros_people_object_detection_tensorflow,代碼行數:31,代碼來源:model_builder.py

示例6: restore_from_classification_checkpoint_fn

# 需要導入模塊: from object_detection.meta_architectures import faster_rcnn_meta_arch [as 別名]
# 或者: from object_detection.meta_architectures.faster_rcnn_meta_arch import FasterRCNNFeatureExtractor [as 別名]
def restore_from_classification_checkpoint_fn(
      self,
      first_stage_feature_extractor_scope,
      second_stage_feature_extractor_scope):
    """Returns a map of variables to load from a foreign checkpoint.

    Note that this overrides the default implementation in
    faster_rcnn_meta_arch.FasterRCNNFeatureExtractor which does not work for
    NASNet-A checkpoints.

    Args:
      first_stage_feature_extractor_scope: A scope name for the first stage
        feature extractor.
      second_stage_feature_extractor_scope: A scope name for the second stage
        feature extractor.

    Returns:
      A dict mapping variable names (to load from a checkpoint) to variables in
      the model graph.
    """
    # Note that the NAS checkpoint only contains the moving average version of
    # the Variables so we need to generate an appropriate dictionary mapping.
    variables_to_restore = {}
    for variable in variables_helper.get_global_variables_safely():
      if variable.op.name.startswith(
          first_stage_feature_extractor_scope):
        var_name = variable.op.name.replace(
            first_stage_feature_extractor_scope + '/', '')
        var_name += '/ExponentialMovingAverage'
        variables_to_restore[var_name] = variable
      if variable.op.name.startswith(
          second_stage_feature_extractor_scope):
        var_name = variable.op.name.replace(
            second_stage_feature_extractor_scope + '/', '')
        var_name += '/ExponentialMovingAverage'
        variables_to_restore[var_name] = variable
    return variables_to_restore 
開發者ID:ShivangShekhar,項目名稱:Live-feed-object-device-identification-using-Tensorflow-and-OpenCV,代碼行數:39,代碼來源:faster_rcnn_nas_feature_extractor.py


注:本文中的object_detection.meta_architectures.faster_rcnn_meta_arch.FasterRCNNFeatureExtractor方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。