本文整理匯總了Python中object_detection.exporter.export_inference_graph方法的典型用法代碼示例。如果您正苦於以下問題:Python exporter.export_inference_graph方法的具體用法?Python exporter.export_inference_graph怎麽用?Python exporter.export_inference_graph使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類object_detection.exporter
的用法示例。
在下文中一共展示了exporter.export_inference_graph方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_export_frozen_graph
# 需要導入模塊: from object_detection import exporter [as 別名]
# 或者: from object_detection.exporter import export_inference_graph [as 別名]
def test_export_frozen_graph(self):
checkpoint_path = os.path.join(self.get_temp_dir(), 'model-ckpt')
self._save_checkpoint_from_mock_model(checkpoint_path,
use_moving_averages=False)
inference_graph_path = os.path.join(self.get_temp_dir(),
'exported_graph.pb')
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel()
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.eval_config.use_moving_averages = False
exporter.export_inference_graph(
input_type='image_tensor',
pipeline_config=pipeline_config,
checkpoint_path=checkpoint_path,
inference_graph_path=inference_graph_path)
示例2: test_export_model_with_all_output_nodes
# 需要導入模塊: from object_detection import exporter [as 別名]
# 或者: from object_detection.exporter import export_inference_graph [as 別名]
def test_export_model_with_all_output_nodes(self):
checkpoint_path = os.path.join(self.get_temp_dir(), 'model-ckpt')
self._save_checkpoint_from_mock_model(checkpoint_path,
use_moving_averages=False)
inference_graph_path = os.path.join(self.get_temp_dir(),
'exported_graph.pb')
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel(add_detection_masks=True)
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
exporter.export_inference_graph(
input_type='image_tensor',
pipeline_config=pipeline_config,
checkpoint_path=checkpoint_path,
inference_graph_path=inference_graph_path)
inference_graph = self._load_inference_graph(inference_graph_path)
with self.test_session(graph=inference_graph):
inference_graph.get_tensor_by_name('image_tensor:0')
inference_graph.get_tensor_by_name('detection_boxes:0')
inference_graph.get_tensor_by_name('detection_scores:0')
inference_graph.get_tensor_by_name('detection_classes:0')
inference_graph.get_tensor_by_name('detection_masks:0')
inference_graph.get_tensor_by_name('num_detections:0')
示例3: test_export_model_with_detection_only_nodes
# 需要導入模塊: from object_detection import exporter [as 別名]
# 或者: from object_detection.exporter import export_inference_graph [as 別名]
def test_export_model_with_detection_only_nodes(self):
checkpoint_path = os.path.join(self.get_temp_dir(), 'model-ckpt')
self._save_checkpoint_from_mock_model(checkpoint_path,
use_moving_averages=False)
inference_graph_path = os.path.join(self.get_temp_dir(),
'exported_graph.pb')
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel(add_detection_masks=False)
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
exporter.export_inference_graph(
input_type='image_tensor',
pipeline_config=pipeline_config,
checkpoint_path=checkpoint_path,
inference_graph_path=inference_graph_path)
inference_graph = self._load_inference_graph(inference_graph_path)
with self.test_session(graph=inference_graph):
inference_graph.get_tensor_by_name('image_tensor:0')
inference_graph.get_tensor_by_name('detection_boxes:0')
inference_graph.get_tensor_by_name('detection_scores:0')
inference_graph.get_tensor_by_name('detection_classes:0')
inference_graph.get_tensor_by_name('num_detections:0')
with self.assertRaises(KeyError):
inference_graph.get_tensor_by_name('detection_masks:0')
示例4: test_export_frozen_graph
# 需要導入模塊: from object_detection import exporter [as 別名]
# 或者: from object_detection.exporter import export_inference_graph [as 別名]
def test_export_frozen_graph(self):
checkpoint_path = os.path.join(self.get_temp_dir(), 'model-ckpt')
self._save_checkpoint_from_mock_model(checkpoint_path,
use_moving_averages=False)
inference_graph_path = os.path.join(self.get_temp_dir(),
'exported_graph.pb')
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel(num_classes=1)
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.eval_config.use_moving_averages = False
exporter.export_inference_graph(
input_type='image_tensor',
pipeline_config=pipeline_config,
checkpoint_path=checkpoint_path,
inference_graph_path=inference_graph_path)
示例5: test_export_frozen_graph_with_moving_averages
# 需要導入模塊: from object_detection import exporter [as 別名]
# 或者: from object_detection.exporter import export_inference_graph [as 別名]
def test_export_frozen_graph_with_moving_averages(self):
checkpoint_path = os.path.join(self.get_temp_dir(), 'model-ckpt')
self._save_checkpoint_from_mock_model(checkpoint_path,
use_moving_averages=True)
inference_graph_path = os.path.join(self.get_temp_dir(),
'exported_graph.pb')
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel(num_classes=1)
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.eval_config.use_moving_averages = True
exporter.export_inference_graph(
input_type='image_tensor',
pipeline_config=pipeline_config,
checkpoint_path=checkpoint_path,
inference_graph_path=inference_graph_path)
示例6: main
# 需要導入模塊: from object_detection import exporter [as 別名]
# 或者: from object_detection.exporter import export_inference_graph [as 別名]
def main(_):
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
with tf.gfile.GFile(FLAGS.pipeline_config_path, 'r') as f:
text_format.Merge(f.read(), pipeline_config)
text_format.Merge(FLAGS.config_override, pipeline_config)
if FLAGS.input_shape:
input_shape = [
int(dim) if dim != '-1' else None
for dim in FLAGS.input_shape.split(',')
]
else:
input_shape = None
exporter.export_inference_graph(
FLAGS.input_type, pipeline_config, FLAGS.trained_checkpoint_prefix,
FLAGS.output_directory, input_shape=input_shape,
write_inference_graph=FLAGS.write_inference_graph)
示例7: test_export_graph_with_image_tensor_input
# 需要導入模塊: from object_detection import exporter [as 別名]
# 或者: from object_detection.exporter import export_inference_graph [as 別名]
def test_export_graph_with_image_tensor_input(self):
tmp_dir = self.get_temp_dir()
trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
use_moving_averages=False)
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel()
output_directory = os.path.join(tmp_dir, 'output')
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.eval_config.use_moving_averages = False
exporter.export_inference_graph(
input_type='image_tensor',
pipeline_config=pipeline_config,
trained_checkpoint_prefix=trained_checkpoint_prefix,
output_directory=output_directory)
self.assertTrue(os.path.exists(os.path.join(
output_directory, 'saved_model', 'saved_model.pb')))
示例8: test_write_inference_graph
# 需要導入模塊: from object_detection import exporter [as 別名]
# 或者: from object_detection.exporter import export_inference_graph [as 別名]
def test_write_inference_graph(self):
tmp_dir = self.get_temp_dir()
trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
use_moving_averages=False)
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel()
output_directory = os.path.join(tmp_dir, 'output')
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.eval_config.use_moving_averages = False
exporter.export_inference_graph(
input_type='image_tensor',
pipeline_config=pipeline_config,
trained_checkpoint_prefix=trained_checkpoint_prefix,
output_directory=output_directory,
write_inference_graph=True)
self.assertTrue(os.path.exists(os.path.join(
output_directory, 'inference_graph.pbtxt')))
示例9: test_export_graph_with_tf_example_input
# 需要導入模塊: from object_detection import exporter [as 別名]
# 或者: from object_detection.exporter import export_inference_graph [as 別名]
def test_export_graph_with_tf_example_input(self):
tmp_dir = self.get_temp_dir()
trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
use_moving_averages=False)
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel()
output_directory = os.path.join(tmp_dir, 'output')
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.eval_config.use_moving_averages = False
exporter.export_inference_graph(
input_type='tf_example',
pipeline_config=pipeline_config,
trained_checkpoint_prefix=trained_checkpoint_prefix,
output_directory=output_directory)
self.assertTrue(os.path.exists(os.path.join(
output_directory, 'saved_model', 'saved_model.pb')))
示例10: test_export_graph_with_moving_averages
# 需要導入模塊: from object_detection import exporter [as 別名]
# 或者: from object_detection.exporter import export_inference_graph [as 別名]
def test_export_graph_with_moving_averages(self):
tmp_dir = self.get_temp_dir()
trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
use_moving_averages=True)
output_directory = os.path.join(tmp_dir, 'output')
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel()
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.eval_config.use_moving_averages = True
exporter.export_inference_graph(
input_type='image_tensor',
pipeline_config=pipeline_config,
trained_checkpoint_prefix=trained_checkpoint_prefix,
output_directory=output_directory)
self.assertTrue(os.path.exists(os.path.join(
output_directory, 'saved_model', 'saved_model.pb')))
expected_variables = set(['conv2d/bias', 'conv2d/kernel', 'global_step'])
actual_variables = set(
[var_name for var_name, _ in tf.train.list_variables(output_directory)])
self.assertTrue(expected_variables.issubset(actual_variables))
示例11: test_export_graph_saves_pipeline_file
# 需要導入模塊: from object_detection import exporter [as 別名]
# 或者: from object_detection.exporter import export_inference_graph [as 別名]
def test_export_graph_saves_pipeline_file(self):
tmp_dir = self.get_temp_dir()
trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
use_moving_averages=True)
output_directory = os.path.join(tmp_dir, 'output')
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel()
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
exporter.export_inference_graph(
input_type='image_tensor',
pipeline_config=pipeline_config,
trained_checkpoint_prefix=trained_checkpoint_prefix,
output_directory=output_directory)
expected_pipeline_path = os.path.join(
output_directory, 'pipeline.config')
self.assertTrue(os.path.exists(expected_pipeline_path))
written_pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
with tf.gfile.GFile(expected_pipeline_path, 'r') as f:
proto_str = f.read()
text_format.Merge(proto_str, written_pipeline_config)
self.assertProtoEquals(pipeline_config, written_pipeline_config)
示例12: test_export_graph_with_encoded_image_string_input
# 需要導入模塊: from object_detection import exporter [as 別名]
# 或者: from object_detection.exporter import export_inference_graph [as 別名]
def test_export_graph_with_encoded_image_string_input(self):
tmp_dir = self.get_temp_dir()
trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
use_moving_averages=False)
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel()
output_directory = os.path.join(tmp_dir, 'output')
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.eval_config.use_moving_averages = False
exporter.export_inference_graph(
input_type='encoded_image_string_tensor',
pipeline_config=pipeline_config,
trained_checkpoint_prefix=trained_checkpoint_prefix,
output_directory=output_directory)
self.assertTrue(os.path.exists(os.path.join(
output_directory, 'saved_model', 'saved_model.pb')))
示例13: test_export_model_with_all_output_nodes
# 需要導入模塊: from object_detection import exporter [as 別名]
# 或者: from object_detection.exporter import export_inference_graph [as 別名]
def test_export_model_with_all_output_nodes(self):
tmp_dir = self.get_temp_dir()
trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
use_moving_averages=True)
output_directory = os.path.join(tmp_dir, 'output')
inference_graph_path = os.path.join(output_directory,
'frozen_inference_graph.pb')
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel(add_detection_masks=True)
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
exporter.export_inference_graph(
input_type='image_tensor',
pipeline_config=pipeline_config,
trained_checkpoint_prefix=trained_checkpoint_prefix,
output_directory=output_directory)
inference_graph = self._load_inference_graph(inference_graph_path)
with self.test_session(graph=inference_graph):
inference_graph.get_tensor_by_name('image_tensor:0')
inference_graph.get_tensor_by_name('detection_boxes:0')
inference_graph.get_tensor_by_name('detection_scores:0')
inference_graph.get_tensor_by_name('detection_classes:0')
inference_graph.get_tensor_by_name('detection_masks:0')
inference_graph.get_tensor_by_name('num_detections:0')
示例14: test_export_graph_with_image_tensor_input
# 需要導入模塊: from object_detection import exporter [as 別名]
# 或者: from object_detection.exporter import export_inference_graph [as 別名]
def test_export_graph_with_image_tensor_input(self):
tmp_dir = self.get_temp_dir()
trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
use_moving_averages=False)
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel()
output_directory = os.path.join(tmp_dir, 'output')
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.eval_config.use_moving_averages = False
exporter.export_inference_graph(
input_type='image_tensor',
pipeline_config=pipeline_config,
trained_checkpoint_prefix=trained_checkpoint_prefix,
output_directory=output_directory)
示例15: test_export_graph_with_tf_example_input
# 需要導入模塊: from object_detection import exporter [as 別名]
# 或者: from object_detection.exporter import export_inference_graph [as 別名]
def test_export_graph_with_tf_example_input(self):
tmp_dir = self.get_temp_dir()
trained_checkpoint_prefix = os.path.join(tmp_dir, 'model.ckpt')
self._save_checkpoint_from_mock_model(trained_checkpoint_prefix,
use_moving_averages=False)
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel()
output_directory = os.path.join(tmp_dir, 'output')
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
pipeline_config.eval_config.use_moving_averages = False
exporter.export_inference_graph(
input_type='tf_example',
pipeline_config=pipeline_config,
trained_checkpoint_prefix=trained_checkpoint_prefix,
output_directory=output_directory)