本文整理匯總了Python中object_detection.eval_util.get_evaluators方法的典型用法代碼示例。如果您正苦於以下問題:Python eval_util.get_evaluators方法的具體用法?Python eval_util.get_evaluators怎麽用?Python eval_util.get_evaluators使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類object_detection.eval_util
的用法示例。
在下文中一共展示了eval_util.get_evaluators方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_get_evaluator_with_evaluator_options
# 需要導入模塊: from object_detection import eval_util [as 別名]
# 或者: from object_detection.eval_util import get_evaluators [as 別名]
def test_get_evaluator_with_evaluator_options(self):
eval_config = eval_pb2.EvalConfig()
eval_config.metrics_set.extend(
['coco_detection_metrics', 'precision_at_recall_detection_metrics'])
eval_config.include_metrics_per_category = True
eval_config.recall_lower_bound = 0.2
eval_config.recall_upper_bound = 0.6
categories = self._get_categories_list()
evaluator_options = eval_util.evaluator_options_from_eval_config(
eval_config)
evaluator = eval_util.get_evaluators(eval_config, categories,
evaluator_options)
self.assertTrue(evaluator[0]._include_metrics_per_category)
self.assertAlmostEqual(evaluator[1]._recall_lower_bound,
eval_config.recall_lower_bound)
self.assertAlmostEqual(evaluator[1]._recall_upper_bound,
eval_config.recall_upper_bound)
示例2: test_get_evaluator_with_no_evaluator_options
# 需要導入模塊: from object_detection import eval_util [as 別名]
# 或者: from object_detection.eval_util import get_evaluators [as 別名]
def test_get_evaluator_with_no_evaluator_options(self):
eval_config = eval_pb2.EvalConfig()
eval_config.metrics_set.extend(
['coco_detection_metrics', 'precision_at_recall_detection_metrics'])
eval_config.include_metrics_per_category = True
eval_config.recall_lower_bound = 0.2
eval_config.recall_upper_bound = 0.6
categories = self._get_categories_list()
evaluator = eval_util.get_evaluators(
eval_config, categories, evaluator_options=None)
# Even though we are setting eval_config.include_metrics_per_category = True
# and bounds on recall, these options are never passed into the
# DetectionEvaluator constructor (via `evaluator_options`).
self.assertFalse(evaluator[0]._include_metrics_per_category)
self.assertAlmostEqual(evaluator[1]._recall_lower_bound, 0.0)
self.assertAlmostEqual(evaluator[1]._recall_upper_bound, 1.0)
示例3: test_get_evaluator_with_evaluator_options
# 需要導入模塊: from object_detection import eval_util [as 別名]
# 或者: from object_detection.eval_util import get_evaluators [as 別名]
def test_get_evaluator_with_evaluator_options(self):
eval_config = eval_pb2.EvalConfig()
eval_config.metrics_set.extend(['coco_detection_metrics'])
eval_config.include_metrics_per_category = True
categories = self._get_categories_list()
evaluator_options = eval_util.evaluator_options_from_eval_config(
eval_config)
evaluator = eval_util.get_evaluators(
eval_config, categories, evaluator_options)
self.assertTrue(evaluator[0]._include_metrics_per_category)
示例4: test_get_evaluator_with_no_evaluator_options
# 需要導入模塊: from object_detection import eval_util [as 別名]
# 或者: from object_detection.eval_util import get_evaluators [as 別名]
def test_get_evaluator_with_no_evaluator_options(self):
eval_config = eval_pb2.EvalConfig()
eval_config.metrics_set.extend(['coco_detection_metrics'])
eval_config.include_metrics_per_category = True
categories = self._get_categories_list()
evaluator = eval_util.get_evaluators(
eval_config, categories, evaluator_options=None)
# Even though we are setting eval_config.include_metrics_per_category = True
# this option is never passed into the DetectionEvaluator constructor (via
# `evaluator_options`).
self.assertFalse(evaluator[0]._include_metrics_per_category)
示例5: test_get_evaluator_with_keypoint_metrics
# 需要導入模塊: from object_detection import eval_util [as 別名]
# 或者: from object_detection.eval_util import get_evaluators [as 別名]
def test_get_evaluator_with_keypoint_metrics(self):
eval_config = eval_pb2.EvalConfig()
person_keypoints_metric = eval_config.parameterized_metric.add()
person_keypoints_metric.coco_keypoint_metrics.class_label = 'person'
person_keypoints_metric.coco_keypoint_metrics.keypoint_label_to_sigmas[
'left_eye'] = 0.1
person_keypoints_metric.coco_keypoint_metrics.keypoint_label_to_sigmas[
'right_eye'] = 0.2
dog_keypoints_metric = eval_config.parameterized_metric.add()
dog_keypoints_metric.coco_keypoint_metrics.class_label = 'dog'
dog_keypoints_metric.coco_keypoint_metrics.keypoint_label_to_sigmas[
'tail_start'] = 0.3
dog_keypoints_metric.coco_keypoint_metrics.keypoint_label_to_sigmas[
'mouth'] = 0.4
categories = self._get_categories_list_with_keypoints()
evaluator = eval_util.get_evaluators(
eval_config, categories, evaluator_options=None)
# Verify keypoint evaluator class variables.
self.assertLen(evaluator, 3)
self.assertFalse(evaluator[0]._include_metrics_per_category)
self.assertEqual(evaluator[1]._category_name, 'person')
self.assertEqual(evaluator[2]._category_name, 'dog')
self.assertAllEqual(evaluator[1]._keypoint_ids, [0, 3])
self.assertAllEqual(evaluator[2]._keypoint_ids, [1, 2])
self.assertAllClose([0.1, 0.2], evaluator[1]._oks_sigmas)
self.assertAllClose([0.3, 0.4], evaluator[2]._oks_sigmas)
示例6: test_get_evaluator_with_unmatched_label
# 需要導入模塊: from object_detection import eval_util [as 別名]
# 或者: from object_detection.eval_util import get_evaluators [as 別名]
def test_get_evaluator_with_unmatched_label(self):
eval_config = eval_pb2.EvalConfig()
person_keypoints_metric = eval_config.parameterized_metric.add()
person_keypoints_metric.coco_keypoint_metrics.class_label = 'unmatched'
person_keypoints_metric.coco_keypoint_metrics.keypoint_label_to_sigmas[
'kpt'] = 0.1
categories = self._get_categories_list_with_keypoints()
evaluator = eval_util.get_evaluators(
eval_config, categories, evaluator_options=None)
self.assertLen(evaluator, 1)
self.assertNotIsInstance(
evaluator[0], coco_evaluation.CocoKeypointEvaluator)
示例7: read_data_and_evaluate
# 需要導入模塊: from object_detection import eval_util [as 別名]
# 或者: from object_detection.eval_util import get_evaluators [as 別名]
def read_data_and_evaluate(input_config, eval_config):
"""Reads pre-computed object detections and groundtruth from tf_record.
Args:
input_config: input config proto of type
object_detection.protos.InputReader.
eval_config: evaluation config proto of type
object_detection.protos.EvalConfig.
Returns:
Evaluated detections metrics.
Raises:
ValueError: if input_reader type is not supported or metric type is unknown.
"""
if input_config.WhichOneof('input_reader') == 'tf_record_input_reader':
input_paths = input_config.tf_record_input_reader.input_path
categories = label_map_util.create_categories_from_labelmap(
input_config.label_map_path)
object_detection_evaluators = eval_util.get_evaluators(
eval_config, categories)
# Support a single evaluator
object_detection_evaluator = object_detection_evaluators[0]
skipped_images = 0
processed_images = 0
for input_path in _generate_filenames(input_paths):
tf.logging.info('Processing file: {0}'.format(input_path))
record_iterator = tf.python_io.tf_record_iterator(path=input_path)
data_parser = tf_example_parser.TfExampleDetectionAndGTParser()
for string_record in record_iterator:
tf.logging.log_every_n(tf.logging.INFO, 'Processed %d images...', 1000,
processed_images)
processed_images += 1
example = tf.train.Example()
example.ParseFromString(string_record)
decoded_dict = data_parser.parse(example)
if decoded_dict:
object_detection_evaluator.add_single_ground_truth_image_info(
decoded_dict[standard_fields.DetectionResultFields.key],
decoded_dict)
object_detection_evaluator.add_single_detected_image_info(
decoded_dict[standard_fields.DetectionResultFields.key],
decoded_dict)
else:
skipped_images += 1
tf.logging.info('Skipped images: {0}'.format(skipped_images))
return object_detection_evaluator.evaluate()
raise ValueError('Unsupported input_reader_config.')